A Calculational Formalism for One-Loop Integrals

Gollahorators:

Formalism: E.W.N. Hlover [hep-ph/0402152]
Numerics: G. Tanderighi and E.W.N. Mover
-Goals and Status.

- From Diagrams to Scalar Integrals.
-From Scalar Integrals to a Basis Set.
-Outlook.

Goals and Status

- A numerical evaluation of one-loop matrix elements for Standard Model processes
- The limiting factor on multiplicity set by computer resources
- No numerical integrations, but basis set of known integrals (Pure numerical approach: i. Sonarimay;

- Numerical reduction of integrals to the basis set of known integrals

Goals and Status

\checkmark Finished basis algorithmic description for

- Works for any internal and external mass configuration.
- Calculates the finite part of the tensor loop integral
- The divergent part of the loop integral is expressed in terms of IR triangles for analytic evaluation.

Goals and Status

G. Zanderighi, W.G \& E.W.M. Glover

\checkmark Implementation of algorithm for up to 6 legs

- Flushing out subtleties in algorithm
- Numerical accuracy of procedure
- First calibration point is :

A non-trivial helicity amplitude is:

Goals and Status

- Next calibration point for final algorithmic stability and correctness is:
- The final calibration point for algorithmic optimization will be:
- After this a more programmatic phase can start
- Many processes of interest can be implemented. E.g.
- Extension by implementing the formalism for more than 6 external lines

From Diagrams to Scalar Integrals

- The first step is to reduce an amplitude in scalar integrals
- Example: the 4 photon process is simply given by

From Diagrams to Scalar Integrals

- To transform this into scalar integrals we use:
"Davydychev" decomposition (Al. Daydiychel)
- Explicit helícity choices.
- The Davydychev decomposition translates a tensor integral into higher dimensional scalar integrals. E.g.:

From Diagrams to Scalar Integrals

- The scalar integrals are given by

From Diagrams to Scalar Integrals

- For instance one of the three diagrams becomes for the $(-,-,+,+)$ helicity configuration:

From Scalar Integrals to Basis Set

- The remaining task is to evaluate the scalar integral
- Here we convert a well established analytic method of recursively expressing the scalar integral into a numerical method
- Repeating the recursion will lower and until we are left with irreducible scalar integrals: the basis set

From Scalar Integrals to Basis Set

- Recursion relations between scalar integrals have been known for a long time in 4 dimensions (Melose 19Gbivil van Heanen a Jam, Vermaseren):

- The extension to arbitrary dimensions was first formalized by L. Bern L.J. DEOM \& D.A KOSOWG:
- And further developed by many groups into the formulation we

From Scalar Integrals to Basis Set

- The basic identity behind the recursion relations is the integration by part identity (KC. Chimidim, AL Marev \& FIL Thechou)
- This leads to the base equation
where the kinematic matrix is given by:

From Diagrams to Scalar Integrals

- For $N \leq 6$ we can invert the kinematic matrix to give the base recursion relation

- For $N>6$ the kinematic matrix cannot be inverted and the recursion relations change in character.

From Diagrams to Scalar Integrals

- Example:
- The integral (8:21.1. will again be reduced
- The other integrals are already base integrals
- The are just determined by the numerical matrix inversion of the kinematic matrix

From Scalar Integrals to Basis Set

- After applying the recursion relation repeatedly we arrive at a base set of integrals:

The 6 -dimensional 5 -point function
This finite integral does not contribute at NLO to any
 Mвіпиicii)
The 6 dimensional 4 -point function, e.g. massless case

Triangles (some of which can be IR/UV divergent)

From Scalar Integrals to Basis Set

- Any process (or Feynman diagram) can now numerically be reduced to the basis set
- The divergent part cancels in this case.
- The kinematic coefficients are calculated numerical in the recursion algorithm
- The analytic expressions of the base functions are evaluated numerical in the recursion algorithm

From Scalar Integrals to Basis Set

- In general we have divergent integrals.
- The UV divergent part of tensor integrals (rank four 4 point and lower points) is trivially separated in the Davydychev decomposition:

From Scalar Integrals to Basis Set

- The remaining divergences are the IR divergences.
- Ofter, we know what they are:
E.g. for the 6 -gluon color ordered amplitude we get (Mea am, hlovar):
(given the appropriate separation of

From Scalar Integrals to Basis Set

- But we might want to calculate the divergent part analytical (e.g. the color suppressed part in the 6 -gluon amplitude)
- This can be done without using the recursion relations (5. Ditimaier Wir \& ENM HDPer). The coefficients of the IR divergent triangles can be calculated analytical:
- Where the tensor is known for any

From Scalar Integrals to Basis Set

- So, generically we get
$M^{N O}(123456) \rightarrow V(123456) M^{10}+F(123456)$
- $K=0$ and $(K, K$ are calculated numerical
- The analytic expressions for and are evaluated numerical
- used in algebraic evaluation

Outlook

- We are in the middle of implementing an algorithm for calculating up to $2 \rightarrow 4$ and Standard Model processes:
- Finished first validation of recursive algorithm:
- Working on second validation:
- Finally for algorthmic optimalization we need to calculate the diagrammatically most complicated process :

Outlook

- After the validation/optimalization of the algorithm we can start working on specific MC programs for Run 2/LHC/LC
- Calculating the one loop diagrams within this scheme is straightforward :

Apply Davydychev decomposition to the Feynman diagrams: this gives Lorenz structures multiplying scalar integrals
2. Use the recursion algorithm to numerically evaluate the scalar integrals to give an evaluation of finite virtual
3. Calculate the divergent part of virtual and combine with soft real emission using slicing/subtraction/sector decomposition to construct the MC

Outlook

- Potential future extensions:
- Extend the algorithm to go beyond 6 external particles. (PC farms project)
- Construct a formalism for 2-loop.
- (Grid computing)

