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 Observing Topological Order using entanglement
The “entanglement spectrum” gives more 
information than the von Neumann entropy: 
FQHE model states, cft, Jack polynomials, and the 
“entanglement gap”



• Feigin et al. 2002 (arXiv:math/0112127)

• Bernevig and FDMH,PRL 100, 246802 (2008)

http://www.qcmbs.org/documents/prompt/HaldaneFDM_20060201.pdf

(Pre-Jack-polynomial results first reported at: 
QCMBS conference, Feb 2006)

Jack polynomial connection:

• Li and FDMH, PRL 101, 010504 (2008)

Entanglement spectrum:

http://www.qcmbs.org/documents/prompt/HaldaneFDM_20060201.pdf
http://www.qcmbs.org/documents/prompt/HaldaneFDM_20060201.pdf


Bipartite entanglement of (pure) quantum states

• Spatial decomposition of wavefunction into two parts

• Singular value (Schmidt)decomposition of W:
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Von Neuman (bipartite) entanglement entropy:

• generalize this to
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1D system (strip, embedded in infinite system)

• Lots of recent interest in Von-Neumann entanglement 
entropy of Condensed matter ground states probably due 
to this famous result

!
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lim
!→∞

SV N → constant

lim
!→∞

SV N →
1
3
c ln(!/a)

( ground state of gapped,
non-critical system)

( ground state of gapless
critical system)

conformal anomaly

lim
!→∞

S(β)→ β−1

3
c ln("/a)generalization:

(Linear in “temperature”)



• Rather than just representing entanglement by 
a single number SVN ,  it is useful to examine 
the full “entanglement spectrum” 

• In particular, examine its “low-energy” 
structure (or examine S(β) for large β  (low 
“temperature” limit)

ξλ

result:   gapped systems with topological order appear 
to always have a gapless entanglement spectrum



Classification of Schmidt 
entanglement states:

• If the state is a singlet representation of 
some group, the entanglement eigenstates 
form irreducible representations.
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example: spin-singlet state

entanglement spectrum has spin multiplets



Example: S=1 chain
No topological order

simple
product state L R

entanglement spectrum “ground state”
 is a degenerate S=1/2 doublet in the 

topologically-ordered “Haldane gap” phase

Note that the low “energy” S=1/2 entanglement degrees of freedom 
become the free S=1/2 edge state if a physical cut is made!

not a simple
product state, but still a 
generic topologically-

trivial state.



• Divide a translationally-invariant gapped 
infinite d-dimensional system into two 
semi-infinite pieces along a (d-1)-
dimensional translationally-invariant plane.

• Can classify entanglement spectrum by  
(d-1)-dimensional momentum or Bloch 
vector parallel to boundary. 



second example: FQHE states:

• Edges of gapped bulk FQHE states are 
described by conformal field theories.

• Expect that the low-energy entanglement 
spectrum is the same (gapless) cft. (Correct!)

• Analogs of AKLT state are the model wavefunctions (Laughlin, 
Moore-Read, etc) that are exact ground states of “special” 
models.  They  have a simpler entanglement spectrum than 
“generic” states with the same topological order.

H.Li and FDMH, PRL 2008



FQHE states in spherical geometry

• Schmidt decomposition of  
Fock space into N and S 
hemispheres.

• Classify states by Lz and 
Ne in northern 
hemisphere, relative to 
dominant configuration. 

FQHE states have L=0



Represent bipartite Schmidt 
decomposition  like an excitation 
spectrum 

• like CFT of edge states.

• A lot more information than 
single number (entropy)

• many zero eigenvalues 
(infinite “pseudoenergies”)

|Ψ〉 =
∑

α

e−βα/2|ΨNα〉 ⊗ |ΨSα〉
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(a) N = 10, Nφ = 27

(b) N = 12, Nφ = 33

FIG. 1: Entanglement spectrum for the 1/3-filling Laughlin
states, for N = 10, m = 3, Nφ = 27 and N = 12, m = 3, Nφ =
33. Only sectors of NA = NB = N/2 are shown.

have a single element and their singular values are de-
generate.

These features are indeed expected from the special
form of ψN . Arbitrarily divide the subscripts in Eq. (2),
i.e., l in ul and vl, into two subsets, say I and J . Let |I|
be the number of elements in I and similarly |J |, note
that |I| + |J | = N . Re-write Eq. (2) as
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uj′vj)m, and i, i′ ∈ I, j, j′ ∈ J . The first two terms in
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respectively. Expanding the third term, we get
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and · · · represents other terms that are not of our con-
cern here. Equation (4) indicates that the sectors at the
greatest two Lz

A’s each contains only one singular value.
In order to explain the degeneracy of the two singular
values, we need to show that the norms of the above four
states are related by
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Therefore Eq. (9) is obtained.
The alert readers may argue that partitioning sub-

scripts as done in Eq. (3) is not equivalent to partition-
ing of Landau-level orbitals. However, the first two terms
in Eq. (4) are in fact equivalent to what we would get
from partitioning Landau-level orbitals, even though the
rest [those represented by · · · in Eq. (4)] are generally

TABLE I: The multiplicity M(∆L) versus ∆L for electronic
Laughlin states of different sizes, for ∆L ! N/2. N is the
numbers of electrons, 1/m is the filling fraction.

∆L 0 1 2 3 4 5 6

N = 6, m = 5 1 1 2 3

N = 8, m = 5 1 1 2 3 5

N = 8, m = 3 1 1 2 3 5

N = 10, m = 3 1 1 2 3 5 7

N = 12, m = 3 1 1 2 3 5 7 11

e−βα = 0 (due to“squeezing” (dominance) property of  Laughlin wavefunction)

Lz

Lz

Hui Li and FDMH,
PRL 101,010504 (2008)



This special structure is a property of cft-based 
“model” wavefunctions such as Laughlin, 

Moore-Read, Read-Rezayi, etc.

• These wavefunctions are homogenous polynomials with a 

“dominance” property

ψ = f(z1, z2, . . . , zN )ψ0

polynomial (Gaussian)
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∑
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(of “orbitals”  zm)
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 configuration”
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m}

dominance



• “dominated by” = “can be obtained by squeezing”
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2z1
1)

1001000.... 0110000....
0110000....
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squeeze
1001000.... is the “root” configuration

The only configurations present in the wavefunction in addition 
to the root are those dominated by (squeezable from) the root
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Jα({zi}), α = −2
bosonic root, related to 1001...



• 1/3 Laughlin has root  1001001001001001..

• 1/3 Laughlin state with quasiholes spanned by 
vandermonde times α  = -2 Jack states with 
roots like  100100010010010001001....

These Root states must satisfy the generalized Pauli rule

Not more than one particle in 3 
consecutive orbitals

(rule for 1/3 Laughlin with abelian quasiholes.)

allowed root states are “admissible” occupation configurations



• Laughlin is Abelian k=1 case, Moore-Read is 
k=2, Read-Rezayi is general k.

• Jack parameter is α = -(k+1)

• Fermionic fillings k/(k+2), Pauli rule is not 
more than k particles in (k+2) consecutive 
“orbitals”.

• n >k filled-Landau level droplets are absent 
in the FQHE + quasihole states. 
(fundamental fermion cluster property). This 
is a fundamental property of the Jack 
Polynomial with an “admissible” 
configuration and specifically chosen Jack 
parameter  α (Feigin, Jimbo, Miwa + Mukhin, 2002)



• Spectrum allows characters of cft (up to a 
finite-size truncation of Virasoro level) to be 
“read off”.

• Spectrum gives (a) conformal anomaly c (b) 
quantum dimensions of each sector, etc.



. . . 100100100100100100000000 . . .
• Laughlin 1/3 vacuum with edge

. . . 100100100100100010000000 . . .

. . . 100100100100010010000000 . . .

. . . 10010010010010000100000 . . .

. . . 10010010010010000010000 . . .

. . . 10010010001001001000000 . . .

. . . 10010010010001000100000 . . .

}

}
}

}

∆Lz = 0 (1)

∆Lz = 1 (1)

∆Lz = 2 (2)

∆Lz = 3 (3)

∆Lz = 4 (5)(etc.)
Note: these represent Jack root  configurations, the full states 
contain “squeezed” Slater determinant configurations completely
 squeezed back into the yellow region

The generalized Pauli rule generates the spectrum of the 
edge conformal field theory:
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(a) N = 10, Nφ = 27

(b) N = 12, Nφ = 33

FIG. 1: Entanglement spectrum for the 1/3-filling Laughlin
states, for N = 10, m = 3, Nφ = 27 and N = 12, m = 3, Nφ =
33. Only sectors of NA = NB = N/2 are shown.

have a single element and their singular values are de-
generate.

These features are indeed expected from the special
form of ψN . Arbitrarily divide the subscripts in Eq. (2),
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and · · · represents other terms that are not of our con-
cern here. Equation (4) indicates that the sectors at the
greatest two Lz

A’s each contains only one singular value.
In order to explain the degeneracy of the two singular
values, we need to show that the norms of the above four
states are related by
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Therefore Eq. (9) is obtained.
The alert readers may argue that partitioning sub-

scripts as done in Eq. (3) is not equivalent to partition-
ing of Landau-level orbitals. However, the first two terms
in Eq. (4) are in fact equivalent to what we would get
from partitioning Landau-level orbitals, even though the
rest [those represented by · · · in Eq. (4)] are generally

TABLE I: The multiplicity M(∆L) versus ∆L for electronic
Laughlin states of different sizes, for ∆L ! N/2. N is the
numbers of electrons, 1/m is the filling fraction.

∆L 0 1 2 3 4 5 6

N = 6, m = 5 1 1 2 3

N = 8, m = 5 1 1 2 3 5

N = 8, m = 3 1 1 2 3 5

N = 10, m = 3 1 1 2 3 5 7

N = 12, m = 3 1 1 2 3 5 7 11
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FIG. 1: Entanglement spectrum for the 1/3-filling Laughlin
states, for N = 10, m = 3, Nφ = 27 and N = 12, m = 3, Nφ =
33. Only sectors of NA = NB = N/2 are shown.
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5

2
1 1

3

Characters of cft (state count vs virasoro level) are reproduced
(up to ultra-violet cutoff from finite size of sphere) 

7



Interpolation between 1/3 Laughlin state and “true” 
ground state of Coulomb interaction.



Look at difference between Laughlin state,entanglement spectrum 
and state that interpolates to Coulomb ground state.

3

(a) x = 1 (b) x = 1/3 (c) x = 1/10

FIG. 2: Entanglement spectrum for the ground state, for a system of N = 10 electrons in the lowest Landau level on a sphere
enclosing Nφ = 27 flux quanta, of the Hamiltonian in Eq. (12) for various values of x.

not. By setting |I| = |J | = N/2, we see that the first two
terms in Eq. (4) indeed correspond to the Lz

A = max(Lz
A)

and Lz
A = max(Lz

A) − 1 sectors in Fig. 1. This not only
explains why these two sectors each has only one singu-
lar value and why the two singular values are degenerate,
but also explicitly gives max(Lz

A) = mN2/8.

The most interesting feature of the spectra shown in
Fig. 1 may be the counting structure. We define a new
symbol ∆L := max(Lz

A) − Lz
A to label the sectors, and

M(∆L) be the multiplicity of the sector, i.e., the number
of singular values in the sector. In Table I we list a few
values of M(∆L) for several small ∆L, for systems of
different sizes. Interestingly, M(∆L) listed there seems
to be the number of integer partitions of ∆L. We spec-
ulate that in the thermodynamic limit where N → ∞,
M(∆L)is exactly the number of integer partitions for any
∆L. Our numerical study also indicates that this is a

FIG. 3: The gap in various sectors of the entanglement spec-
trum of the ground state of the Hamiltonian in Eq. (12) for
a system of N = 10 electrons in the lowest Landau level on
a sphere enclosing Nφ = 27 flux quanta. At x ! 1, the gap
appears to be linear in − log x.

unique feature for all states in the Laughlin sequence,
independent of filling fraction.

This can be understood when we further review the
form of Laughlin wave-functions in Eq. (3). Even
though it is not explicitly about partitioning Landau-
level orbitals, it reveals the origin of the entanglement in
Laughlin states, correlated quasi-hole excitations in the
two blocks. Thus the multiplicity M(∆L) is simply the
number of linearly-independent quasi-hole excitations in
block A that have total Lz angular momentum equal to
∆L, which, in a sufficiently large system, is exactly the
number of ways that the integer ∆L can be partitioned.
For any finite system, as soon as ∆L > N/2, some of
the partitions of ∆L may contain parts that are greater
than N/2. Since no quasi-hole can carry angular momen-
tum larger than N/2, multiplicity of such a ∆L will be
smaller than the number of partitions. Indeed, this is in
full consistency with our numerical analysis.

Now we turn to the entanglement spectrum of true
ground states of Coulomb interaction. The system we
will be interested in has N = 10 electrons in the lowest
Landau level on the sphere that contains Nφ = 28 flux
quanta. This system has the same size of one that sup-
ports an N = 10, m = 3 Laughlin state. We will study
the numerically obtained ground state of the following
Hamiltonian [9]

H = xHc + (1 − x)V1 (12)

where x ∈ [0, 1] is the tuning parameter, Hc is the Hamil-
tonian of Coulomb interaction in the lowest Landau level,
while V1 is the pseudo-potential that gives unit energy
whenever the relative angular momentum of a pair of
electrons is 1. For a few typical values of x, the spectra
are presented in Fig. 2.

For the ground state of the unmodified Coulomb inter-
action in the lowest Landau level (x = 1), the spectrum
shows a clear gap near max(Lz

A) which in our case here is
75
2 , which gradually closes as Lz

A decreases to ∼ 30. The
gap becomes clearer for all Lz

A ! max(Lz
A) at x = 1/3,

3
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FIG. 2: Entanglement spectrum for the ground state, for a system of N = 10 electrons in the lowest Landau level on a sphere
enclosing Nφ = 27 flux quanta, of the Hamiltonian in Eq. (12) for various values of x.

not. By setting |I| = |J | = N/2, we see that the first two
terms in Eq. (4) indeed correspond to the Lz

A = max(Lz
A)

and Lz
A = max(Lz

A) − 1 sectors in Fig. 1. This not only
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but also explicitly gives max(Lz
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Fig. 1 may be the counting structure. We define a new
symbol ∆L := max(Lz

A) − Lz
A to label the sectors, and

M(∆L) be the multiplicity of the sector, i.e., the number
of singular values in the sector. In Table I we list a few
values of M(∆L) for several small ∆L, for systems of
different sizes. Interestingly, M(∆L) listed there seems
to be the number of integer partitions of ∆L. We spec-
ulate that in the thermodynamic limit where N → ∞,
M(∆L)is exactly the number of integer partitions for any
∆L. Our numerical study also indicates that this is a

FIG. 3: The gap in various sectors of the entanglement spec-
trum of the ground state of the Hamiltonian in Eq. (12) for
a system of N = 10 electrons in the lowest Landau level on
a sphere enclosing Nφ = 27 flux quanta. At x ! 1, the gap
appears to be linear in − log x.

unique feature for all states in the Laughlin sequence,
independent of filling fraction.

This can be understood when we further review the
form of Laughlin wave-functions in Eq. (3). Even
though it is not explicitly about partitioning Landau-
level orbitals, it reveals the origin of the entanglement in
Laughlin states, correlated quasi-hole excitations in the
two blocks. Thus the multiplicity M(∆L) is simply the
number of linearly-independent quasi-hole excitations in
block A that have total Lz angular momentum equal to
∆L, which, in a sufficiently large system, is exactly the
number of ways that the integer ∆L can be partitioned.
For any finite system, as soon as ∆L > N/2, some of
the partitions of ∆L may contain parts that are greater
than N/2. Since no quasi-hole can carry angular momen-
tum larger than N/2, multiplicity of such a ∆L will be
smaller than the number of partitions. Indeed, this is in
full consistency with our numerical analysis.

Now we turn to the entanglement spectrum of true
ground states of Coulomb interaction. The system we
will be interested in has N = 10 electrons in the lowest
Landau level on the sphere that contains Nφ = 28 flux
quanta. This system has the same size of one that sup-
ports an N = 10, m = 3 Laughlin state. We will study
the numerically obtained ground state of the following
Hamiltonian [9]

H = xHc + (1 − x)V1 (12)

where x ∈ [0, 1] is the tuning parameter, Hc is the Hamil-
tonian of Coulomb interaction in the lowest Landau level,
while V1 is the pseudo-potential that gives unit energy
whenever the relative angular momentum of a pair of
electrons is 1. For a few typical values of x, the spectra
are presented in Fig. 2.

For the ground state of the unmodified Coulomb inter-
action in the lowest Landau level (x = 1), the spectrum
shows a clear gap near max(Lz

A) which in our case here is
75
2 , which gradually closes as Lz

A decreases to ∼ 30. The
gap becomes clearer for all Lz

A ! max(Lz
A) at x = 1/3,

x=0 is pure
Laughlin

Can we identify topological order in “physical as opposed to model 
wavefunctions from low-energy entanglement spectra?

2

(a) N = 10, Nφ = 27

(b) N = 12, Nφ = 33

FIG. 1: Entanglement spectrum for the 1/3-filling Laughlin
states, for N = 10, m = 3, Nφ = 27 and N = 12, m = 3, Nφ =
33. Only sectors of NA = NB = N/2 are shown.

have a single element and their singular values are de-
generate.

These features are indeed expected from the special
form of ψN . Arbitrarily divide the subscripts in Eq. (2),
i.e., l in ul and vl, into two subsets, say I and J . Let |I|
be the number of elements in I and similarly |J |, note
that |I| + |J | = N . Re-write Eq. (2) as

ψN = ψI · ψJ ·
∏

i,j
(uivj − ujvi)

m (3)

where ψI =
∏

i<i′(uivi′ − ui′vi)m, ψJ =
∏

j<j′ (ujvj′ −
uj′vj)m, and i, i′ ∈ I, j, j′ ∈ J . The first two terms in
the product in Eq. (3), ψI and ψJ , describe two Laugh-
lin droplets that consist of particles in subsets I and J ,
respectively. Expanding the third term, we get

ψN = ψ(0)
I ψ(0)

J + m · ψ(1)
I ψ(1)

J + · · · (4)

where

ψ(0)
I = ψI ·

∏

i
um|J|

i (5)

ψ(0)
J = ψJ ·

∏

j
vm|I|

j (6)

ψ(1)
I = ψI ·

∏

i
um|J|

i ·
∑

i

vi

ui
(7)

ψ(1)
J = ψJ ·

∏

j
vm|I|

j ·
∑

j

uj

vj
(8)

and · · · represents other terms that are not of our con-
cern here. Equation (4) indicates that the sectors at the
greatest two Lz

A’s each contains only one singular value.
In order to explain the degeneracy of the two singular
values, we need to show that the norms of the above four
states are related by

‖ψ(0)
I ‖‖ψ(0)

J ‖ = m‖ψ(1)
I ‖‖ψ(1)

J ‖ (9)

Note that the total angular momentum operators of

subset I are Lz
I = 1

2

∑

I∈I

(

ui
∂

∂ui
− vi

∂
∂vi

)

, L+
I =

∑

i∈Iui
∂

∂vi
, L+

I =
∑

i∈Ivi
∂

∂ui
. It is easy to show that

Lz
Iψ

(0)
I = m

2 |I||J |ψ
(0)
I , L+

I ψ(0)
I = 0, L−

I ψ(0)
I = m|J |ψ(1)

I ,

which means that ψ(0)
I and ψ(1)

I belong to the same ir-

reducible representation of which "L2
I = S(S + 1) where

S = m
2 |I||J |. Thus using L−

I |lz,S〉 = [S(S + 1) − lz(lz −

1)]1/2|lz − 1,S〉 and lz = S, we get

‖ψ(1)
I ‖2 =

1

m2|J |2
‖L−

I ψ(0)
i ‖2 =

|I|

m|J |
‖ψ(0)

I ‖2 (10)

Similarly we have

‖ψ(1)
J ‖2 =

|J |

m|I|
‖ψ(0)

J ‖2 (11)

Therefore Eq. (9) is obtained.
The alert readers may argue that partitioning sub-

scripts as done in Eq. (3) is not equivalent to partition-
ing of Landau-level orbitals. However, the first two terms
in Eq. (4) are in fact equivalent to what we would get
from partitioning Landau-level orbitals, even though the
rest [those represented by · · · in Eq. (4)] are generally

TABLE I: The multiplicity M(∆L) versus ∆L for electronic
Laughlin states of different sizes, for ∆L ! N/2. N is the
numbers of electrons, 1/m is the filling fraction.

∆L 0 1 2 3 4 5 6

N = 6, m = 5 1 1 2 3

N = 8, m = 5 1 1 2 3 5

N = 8, m = 3 1 1 2 3 5

N = 10, m = 3 1 1 2 3 5 7

N = 12, m = 3 1 1 2 3 5 7 11



• Moore-Read 5/2 = (2+) 2/4:

. . . 1100110011001100110000000000 . . .

. . . 10101010101010101000000000000 . . .

ground state of a boundary of a droplet containing an 
even number of -e/4 quasiholes

ground state of a boundary of a droplet containing an 
odd number of -e/4 quasiholes
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FIG. 1: The complete entanglement spectra of the Ne = 16 and Norb = 30 Moore-Read state (only the relative values of ξ and
LA

z are meaningful).

spectrum) of levels ξi contains much more information
than the entanglement entropy S, a single number. This
is analogous to the extra information about a condensed
matter system given by its low-energy excitation spec-
trum rather than just by its ground state energy.

Because the FQHE ground state is translationally and
rotationally invariant (with quantum number Ltot = 0 on
the sphere), and the partitioning of Landau-level orbitals
conserves both gauge symmetry and rotational symme-
try along the z-direction, in either block A or B both the
electron number (NA

e and NB
e ) and the total z-angular

momentum (LA
z and LB

z ) are good quantum numbers
constrained by NA

e + NB
e = Ne, LA

z + LB
z = 0. The en-

tanglement spectrum splits into distinct sectors labeled
by NA

e and LA
z .

In the thermodynamic limit, the MR model state can
be represented by its “root configuration” [15], which
has occupation numbers “11001100 · · ·110011”, with a
repeated sequence · · · 1100 · · · ; in spherical geometry,
this is terminated by “11” at both ends. This is the
highest-density “MR root configuration”, which we de-
fine as an occupation-number configuration satisfying a
“generalized Pauli principle” that no group of 4 consec-
utive orbitals contains more than 2 particles (this rule
also applies to MR states with quasiholes, and gener-
ates the CFT edge spectrum of a finite MR droplet on
the open plane [15].) When the MR state is expanded
in the occupation-number basis, the only configurations
(Slater determinants) present are those obtained by start-

TABLE I: The numbers in the parenthesis are values of
(NA

orb, N
A
e ), respectively for each system and partitioning as

specified.

Ne P [0|0] P [0|1] P [1|1]
10 (7, 4) (8, 4) (9, 5)

12 or 14 (11, 6) (12, 6) (13, 7)

16 (15, 8) (16, 8) (17, 9)

ing from the root configuration, and “squeezing” pairs
of particles with Lz = m1, m2 closer together, reducing
|m1 − m2|, while preserving m1 + m2 [15].

From the root configuration, we see that there are three
distinct ways of partitioning the orbitals: (i) between two
0’s; (ii) between two 1’s; or (iii) between 0 and 1 (the par-
titioning between 1 and 0 is equivalent to that between
0 and 1 by reflection symmetry). We use symbols P [0|0],
P [1|1], and P [0|1] to represent the three cases, respec-
tively. This will correspond to choosing one of the three
sectors of the associated conformal field theory. For finite
systems, we always try to draw the boundary of the par-
titioning either on the equator (if possible), or closest to
the equator but in the southern hemisphere. Moreover,
we can associate a “natural” value to NA

e for a particu-
lar partitioning, i.e., the total number of 1’s in the root
occupation sequence on the left-hand-side to the bound-
ary. In this Letter, it is sufficient to consider only levels
whose NA

e is exactly this natural value. Table I describes
the precise meaning of these symbols for systems that are
considered here.

Figure (1) shows the spectra for each of the three dif-
ferent ways of partitioning, for the Moore-Read state at
Ne = 16 and Norb = 30. The spectrum not only has
far fewer levels than expected for a generic wavefunction,
but also exhibits an intriguing level-counting structure
(as a function of LA

z and Na
e ) that resembles that of the

associated conformal field theory of the edge excitations.
Intuitively, this is because the boundary of the Landau-
level partitioning indeed defines an edge shared by region
A and B.

In the intuitive picture, the quantum entanglement
between A and B arises from correlated quasihole exci-
tations across the boundary along which the partition-
ing is carried out. Any quasihole excitation in region
A necessarily pushes electrons into region B, and vice
versa. However, the electron density anywhere on the
sphere must remain constant, which can be achieved if
the quasihole excitations in A and B are correlated (en-
tangled). This gives the empirical rules of counting the
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FIG. 2: The low-lying entanglement spectra of the Ne = 16 and Norb = 30 ground state of the Coulomb interaction projected
into the second Landau level (there are levels beyond the regions shown here, but they are not of interest to us). The insets
show the low-lying parts of the spectra of the Moore-Read state, for comparison [see Figure (1)]. Note that the structure of
the low-lying spectrum is essentially identical to that of the ideal Moore-Read state.

levels. Take the spectrum in Figure (1(a)) as an example.
The partitioning P [0|0] results in the root configuration
110011001100110 on the northern hemisphere (region A),
and it corresponds to the single “level” at the highest pos-
sible value of LA

z = LA
z,max = 64. We measure the LA

z by
its deviation from LA

z,max, i.e. ∆L := LA
z,max−LA

z , which
has the physical meaning of being the total z-angular
momentum carried by the quasiholes. At ∆L = 1, the
levels correspond to edge excitations upon the ∆L = 0
root configuration. There is exactly one edge mode
in this case, represented by the MR root configuration
110011001100101.

The number of ∆L = 2 levels can be counted in exactly
the same way. There are three of them, of which the root
configurations are

1100110011001001
1100110011000110
1100110010101010

while for ∆L = 3, the five root configurations are

11001100110010001
11001100110001010
11001100101001100
11001100101010010
11001010101010100

The counting for the levels at small ∆L for P [0|1] and
P [1|1] can be obtained similarly.

For an infinite system in the thermodynamic limit, the
above idea gives an empirical counting rule of the number
of levels at any ∆L, i.e., it is the number of independent
quasihole excitations upon the semi-infinite root config-
uration uniquely defined by the partitioning. For a finite
system, this rule explains the counting only for small
∆L; for large ∆L, the finite size limits the maximal an-
gular momentum that can be carried by an individual

quasihole. Therefore the number of levels at large ∆L
in a finite system will be smaller than the number ex-
pected in an infinite system. Not only is this empirical
rule consistent with all our numerical calculation, but
it also explains why P [0|0] and P [0|1] have essentially
identical low-lying structures. This is because the (semi-
infinite) configuration “· · · 1100110” is essentially equiva-
lent to “· · · 11001100” (with an extra “0” attached to the
right). We expect that P [0|0] and P [0|1] become exactly
identical in the thermodynamic limit.

For completeness, we list the root configurations asso-
ciated with the first few low-lying levels in Figure (1(c)).

∆L = 0 : 11001100110011001
∆L = 1 : 110011001100110001

110011001100101010
∆L = 2 : 1100110011001100001

1100110011001010010
1100110011001001100
1100110010101010100

Figure (2) shows the spectra of the system of the same
size as in Figure (1), i.e., Ne = 16 and Norb = 30, but for
the ground state of the Coulomb interaction projected
into the second Landau level, obtained by direct diag-
onalization. Interestingly, the low-lying levels have the
same counting structure as the corresponding Moore-
Read case. We identify these low-lying levels as the
“CFT” part of the spectrum, in contrast to the other
generic, non-CFT levels that are expected for generic
many-body states. At relatively small ∆L (up to a limit
which grows with the size of the system), the CFT lev-
els are separated from the generic levels by a clear gap,
which we define as the distance from the average of the
CFT levels to the bottom of the generic levels.

Figure (3) shows the value of this gap (at ∆L = 0, 1, 2
respectively) as a function of the size of the system, based
on which we speculate that the gap between the CFT

Similar calculations for Moore-Read state
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FIG. 3: Entanglement gap as a function of 1/N . δ0 is the gap at ∆L = 0, i.e., the distance from the single CFT level at
∆L = 0 to the bottom of the generic (non-CFT) levels at ∆L = 0. At ∆L = 1, 2, the gap δ1,2 is defined as the distance from
the average of the CFT levels to the bottom of the generic levels. See Table I for the details of various partitionings.

and non-CFT levels remains finite in the thermodynamic
limit for all ∆L. The observed fact that the structure of
the low-lying spectrum is essentially identical to that of
the Moore-Read state, as well as the existence of the “en-
tanglement gap”, serve as evidence that the “realistic”
ν = 5/2 FQH states is indeed modeled by the Moore-
Read state.

Assuming that the gap does remain finite in the ther-
modynamic limit, characterization of the entanglement
spectrum is a reliable way to identify a topologically
ordered state. While finite-size numerical studies of-
ten show impressive (e.g., 99%) overlaps between model
wave-functions (Laughlin, Moore-Read, etc.) and “re-
alistic” states at intermediate system sizes, this cannot
persist in the thermodynamic limit. Furthermore, the
entanglement spectrum is a property of the ground state
wave-function itself, as oppose to the physical excitations
of a system with boundaries, so allows direct comparison
between model states and physical ones.

The asymptotic behavior of the characters of a CFT
(the count of independent states at each Virasoro level, in
each sector) defines both the effective conformal anomaly
c̃ of the CFT, and the quantum dimension of each sec-
tor. To the extent that there is a clear separation of the
“gapless”, low-lying CFT-like modes and the generic (but
“gapped”) modes, one can count the number of “gapless”
modes as a function of momentum parallel to the bound-
ary separating the two regions. For a finite-size system,
these will match the CFT characters up to some limit
that grows with system size. These numbers are integers,
so are not subject to numerical error, and in principle,
both c̃ and the quantum dimensions can be extracted
from their behavior as the system size grows.

As a critical point is approached, the “entanglement
gap” may still be finite but well below the “temperature”
T = 1 at which the von Neumann entropy is evaluated.

We suggest that the direct study of the low-lying entan-
glement spectrum is a far more meaningful way to char-
acterize bipartite entanglement. Equivalently, the T → 0
“low-temperature” entropy of the modified family of den-
sity matrices ρ̂(1/T ) may prove useful, as this corresponds
to the thermodynamic entropy of the entanglement spec-
trum at temperature T .

We thank B. A. Bernevig for valuable comments and
suggestions. This work was supported in part by NSF
MRSEC DMR02-13706.
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Gap to non-cft  entanglement levels states of 
“generic” states appear to remain finite in the 

thermodynamic limit.
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“Entanglement spectrum”
(free fermions)

• Divide infinite crystal along a lattice 
plane into two semi-infinite regions

• can find a unitary change of basis of 
occupied states where

|Ψ〉 =
∏

α,k⊥

(
uαk⊥c†αk⊥L + vαk⊥c†αk⊥R

)
|vac〉 |uαk⊥ |2 + |vαk⊥ |2 = 1

Bloch vector parallel to “cut”

Ê =
∑

αk⊥

εαk⊥nαk⊥

εαk⊥R = log
(

|uαk⊥ |2

|vαk⊥ |2

)

nαk⊥ = 0, 1

• Density matrix spectrum

• “Entanglement spectrum”:

ρ̂R ∝ e−ÊRρ̂L ∝ e−ÊL

cut

Left Right
PRPL



generic “entanglement spectrum” of a band insulator

• levels below 0 
occupied in “ground 
state” (dominant term 
in (Schmidt) 
expansion)

• varies as lattice plane 
of cut is moved: bands 
move  from empty to 
filled region(spectral 
flow)

εR

(quite different if a Fermi surface is present)

“empty”

“filled”

k⊥



spectrum with a Fermi surface

k⊥

εR

Fermi surface
in this range

levels coalesce into a continuum if a Fermi surface is present
(density of states proportional to log(width) for a finite width (not semi-infinite) region.

Fermi surface
in this range

k⊥

FS

continuum



topologically-non-trivial “band insulator”

• topologically-non-trivial filled bands show 
“spectral flow” as a function of    

“empty”

“filled”

k⊥

k⊥

εR



2D zero-field Quantized 
Hall Effect

• 2D quantized Hall effect: σxy = νe2/h.   In the 
absence of  interactions between the particles, ν  
must be an integer.   There are no current-carrying 
states at the Fermi level in the interior of a QHE 
system (all such states are localized on its edge).

• The 2D integer QHE does NOT require Landau 
levels,  and can occur if time-reversal symmetry is 
broken even if there is no net magnetic flux through 
the unit cell of a periodic system.   (This was first 
demonstrated in an explicit “graphene” model 
shown at the right.). 

• Electronic states are “simple” Bloch states! (real 
first-neighbor hopping t1, complex second-neighbor 

hopping t2eiφ, alternating onsite potential M.)

FDMH, Phys. Rev. Lett. 61, 2015 (1988). 



single-particle entanglement spectrum   (schematic, but
confirmed by actual calculations, WIP) (Zig-zag cut)

generates free
fermion cft (c=1)

as full entanglement
spectrum.

“spectral flow” from
L to R as k changes

⊥

⊥

⊥



k‖k‖

0 2ππ π2π 0

1 1

0 0

PR
PR

QHENo QHE

spectral
flow

t1 = 1
t2 = 0.3i

V = 1.45t1 = 1
t2 = 0.3i

V = 1.60

t1 = 1
t2 = 0.3i

Vc = 1.55
entanglement 

spectrum  across 
“zigzag” cut

(“graphene”with T and I breaking) 



• Gapless nature of “entanglement spectrum” 
seems quite universal in topological order 

• Simple “ideal states” have less quantum 
fluctuations than generic ones, have ONLY the  
(required) spectrum of the topological order.

• spectrum seems to be a more useful 
characterization of entanglement than “just” a 
single number, the Von Neumann entropy.


