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Entanglement Spectrum of
Quantum Hall States

F. D.M. Haldane, Princeton University

*  Observing Topological Order using entanglement
*  The “entanglement spectrum” gives more
information than the von Neumann entropy:

FQHE model states, cft, Jack polynomials, and the
“entanglement gap”




(Pre-Jack-polynomial results first reported at:
QCMBS conference, Feb 2006)

http://www.gcmbs.org/documents/prompt/HaldaneFDM_2006020 | .pdf

Jack polynomial connection:

® Feigin et al. 2002 (arXiv:math/01 12127)
® Bernevig and FDMH,PRL 100, 246802 (2008)

Entanglement spectrum:

® |Liand FDMH, PRL 101,010504 (2008)



http://www.qcmbs.org/documents/prompt/HaldaneFDM_20060201.pdf
http://www.qcmbs.org/documents/prompt/HaldaneFDM_20060201.pdf

Bipartite entanglement of (pure) quantum states
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® Spatial decomposition of wavefunction into two parts

® Singular value (Schmidt)decomposition of WV:
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Von Neuman (bipartite) entanglement entropy:
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® generalize this to “energy levels”
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dimensionless analog of
“inverse temperature”
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| D system (strip, embedded in infinite system)
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lim Sy — constant ( ground state of gapped,

=00 non-critical system)
lim Sy — lcln(f/a) ( ground state of gapless
e SN critical system)

conformal anomaly

® | ots of recent interest in Von-Neumann entanglement
entropy of Condensed matter ground states probably due
to this famous result
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generalization: lim S(ﬁ) > 53 cln(f/a) (Linear in “temperature”)
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® Rather than just representing entanglement by
a single number Syn, it is useful to examine

the full “entanglement spectrum” ¢,

® |n particular, examine its “low-energy”
structure (or examine S(B) for large B (low

“temperature” limit)

result: gapped systems with_topological order appear
to always have a gapless entanglement spectrum




Classification of Schmidt
entanglement states:

® |f the state is a singlet representation of
some group, the entanglement eigenstates
form irreducible representations.

example: spin-singlet state
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entanglement spectrum has spin multiplets




Example: S=1 chain
NO to POIOgicaI Order entanglement spectrum “ground state”

is a degenerate S=1/2 doublet in the
topologically-ordered “Haldane gap” phase
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not a simple
product state, but still a
generic topologically-

trivial state. : ! ..
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simple
product state

Note that the low “energy” S=1/2 entanglement degrees of freedom
become the free S=1/2 edge state if a physical cut is made!




® Divide a translationally-invariant gapped
infinite d-dimensional system into two
semi-infinite pieces along a (d-1)-
dimensional translationally-invariant plane.

® Can classify entanglement spectrum by
(d-1)-dimensional momentum or Bloch
vector parallel to boundary.




second example: FQHE states:

® Edges of gapped bulk FQHE states are
described by conformal field theories.

Expect that the low-energy entanglement
spectrum is the same (gapless) cft. (Correct!)

® Analogs of AKLT state are the model wavefunctions (Laughlin,
Moore-Read, etc) that are exact ground states of “special”
models. They have a simpler entanglement spectrum than
“generic”’ states with the same topological order.

H.Li and FDMH, PRL 2008



FQHE states in spherical geometry
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® Schmidt decomposition of //—\\

Fock space into N and S ~

hemispheres.
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® Classify states by Lz and 7T
Ne in northern [

hemisphere, relative to Z[

dominant configuration. > ¥
FQHE states have L=0




Represent bipartite Schmidt

decomposition like an excitation

spectrum Hui Li and FDMH,
PRL 101,010504 (2008)
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® like CFT of edge states.

® A lot more information than
single number (entropy)

LZ

(b) N =12, N, = 33
FIG. 1: Entanglement spectrum for the 1/3-filling Laughlin
: tates, for N =10,m =3, Ny, =27 and N =12, m =3, Ny =
’ m any Ze ro e Ige nval u es ?538.L (gnl;rsectors of?\fA = Nj; = N/znare shown.m ’
° f‘ ° ¢¢ d o )
(infinite “pseudoenergies’™)

—Bea
€ — (due to“squeezing” (dominance) property of Laughlin wavefunction)




This special structure is a property of cft-based
“model” wavefunctions such as Laughlin,
Moore-Read, Read-Rezayi, etc.

@ [|hese wavefunctions are homogenous polynomials with a

“dominance” property
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polynomial  (Gaussian)

“occupation numbers”
(of “orbitals” z™)

(N} < {ng%}éroot occupation

dominance configuration”



® “dominated by” ="can be obtained by squeezing”

(21— 22)° = (5123 — %527) = B(2123 — %321)
occupations: I\(‘)Oll 000... >~ 0110000....

0110000.... squeezing conserves
M = Zmz = Zmnm
squeeze S

1001000.... is the “root” configuration

® [he root has the maximum variance
V=Y lm-m)t= 3 (m )P,

ack (symmetric) polynomial
m}(zl,zz) Jack (sy ) poly

\ J*({zi}), a=-2

bosonic root, related to 1001...




® |/3 Laughlin has root 1001001001001001..

® |/3 Laughlin state with quasiholes spanned by
vandermonde times « = -2 Jack states with

roots like 100100010010010001001....

These Root states must satisfy the generalized Pauli rule

(rule for 1/3 Laughlin with abelian quasiholes.)

allowed root states are “admissible” occupation configurations




® Laughlin is Abelian k=1 case, Moore-Read is
k=2, Read-Rezayi is general £.

® |ack parameter is o = -(k+1)

® Fermionic fillings k/(k+2), Pauli rule is not
more than £k particles in (k+2) consecutive
“orbitals”.

® n >k filled-Landau level droplets are absent
in the FQHE + quasihole states.
(fundamental fermion cluster property). This
is a fundamental property of the Jack
Polynomial with an “admissible”
configuration and specifically chosen Jack
parameter (X (Feigin, Jimbo, Miwa + Mukhin, 2002)




® Spectrum allows characters of cft (up to a

finite-size truncation of Virasoro level) to be
“read off”’.

® Spectrum gives (a) conformal anomaly ¢ (b)
quantum dimensions of each sector; etc.




The generalized Pauli rule generates the spectrum of the
edge conformal field theory:

® Laughlin 1/3 vacuum with edge
...100100100100100100000000... t AL* =0 (1)

. 100100100100100010000000... } AL* =1 (1)

...10010010010010000100000. . . }_ )
..100100100100010010000000 . . . AL* =2 (2)

.. 10010010010001080100000 . . .
..10010010001001001000000 . . .

..10010010010010000010000 . . .
:}-ALZS (3)

(etc.) (5)

Note: these represent Jack root configurations, the full states
contain “squeezed” Slater determinant configurations completely
squeezed back into the yellow region
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(b) N =12, N, = 33

Characters of cft (state count vs virasoro level) are reproduced
(up to ultra-violet cutoff from finite size of sphere)




Interpolation between |/3 Laughlin state and “true”
ground state of Coulomb interaction.

FIG. 6. Low-lying states at N=6, 25 =15 (v =) as the

‘“‘hard-core’ pseudopotential component V; is varied. The
other V,, take their Coulomb values. V3 and the Coulomb
value (C) of Vy are marked. Angular momentum quantum
numbers L are indicated. Also shown is the projection of
the LJ state on the ground state. In the gapless regime
(A > 1.25), the LJ state reappears as the hightest L =0 level.
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FIG. 1. The spectrum of 1656 multiplets (50388 states)
of the N=7 electron, 25=18 flux quanta system with
Coulomb interactions, grouped by total angular momentum
L. Energies (in units of e%/4mel) are shown relative to the
incompressible (v = %r) isotropic (L =0) ground state.
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FIG. 3. (a) Ground-state pair correlation function for
v=1%, N=6. (b),(c) Density profiles of localized quasipar-
ticle and quasihole defects. The condensate density p satis-
fies 4mR% =6, 5%, and 64, respectively. Filled curves,
Coulomb interaction; broken curves, model Laughlin-
Jastrow wave functions.




Look at difference between Laughlin state,entanglement spectrum
and state that interpolates to Coulomb ground state.

(a) z =1 (b) x =1/3 (c)x=1/10

FIG. 2: Entanglement spectrum for the ground state, for a system of N = 10 electrons in the lowest Landau level on a sphere
enclosing Ny = 27 flux quanta, of the Hamiltonian in Eq. (12) for various values of x.

x=0 is pure
H =zH: + (1 —2)V Laughlin

Can we identify topological order in “physical as opposed to model
wavefunctions from low-energy entanglement spectra?




® Moore-Read 5/2 = (2+) 2/4:
... 1100110011001100110000000000 . . .

ground state of a boundary of a droplet containing an
even number of -e/4 quasiholes

...10101010101010101000000000000 . . .

ground state of a boundary of a droplet containing an
odd number of -e/4 quasiholes




Similar calculations for Moore-Read state

1 1 1 1 1 1 0: 1 1 1
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FIG. 1: The complete entanglement spectra of the N. = 16 and N,,, = 30 Moore-Read state (only the relative values of £ and
L% are meaningful).
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FIG. 2: The low-lying entanglement spectra of the N. = 16 and N,., = 30 ground state of the Coulomb interaction projected
into the second Landau level (there are levels beyond the regions shown here, but they are not of interest to us). The insets
show the low-lying parts of the spectra of the Moore-Read state, for comparison [see Figure (1)]. Note that the structure of
the low-lying spectrum is essentially identical to that of the ideal Moore-Read state.




Gap to non-cft entanglement levels states of
“generic” states appear to remain finite in the
thermodynamic limit.
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FIG. 3: Entanglement gap as a function of 1/N. &p is the gap at AL = 0, i.e., the distance from the single CFT level at
AL = 0 to the bottom of the generic (non-CFT) levels at AL = 0. At AL = 1,2, the gap d1,2 is defined as the distance from
the average of the CF'T levels to the bottom of the generic levels. See Table I for the details of various partitionings.




FIG. 1: 6V1 = —0.05 FIG. 2: Vi = —0.02
FIG. 3: 6V1 = —0.015

FIG. 6: 6V1 =0
FIG. 4: 6V = —0.01

low-lying entanglement spectrum
matches that of pure MR state
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FIG. 7: 0V1 = 0.04




“Entanglement spectrum”
(free fermions)

Divide infinite crystal along a lattice
plane into two semi-infinite regions

can find a unitary change of basis of

occupied states where
T f
H (uak’J— CakJ_L + Vak | CakJ_R |Va“C> ‘U’O‘kﬂ_ ‘2 + ‘/UOékJ_ ‘2 =1

Oé,kJ_ \

® Density matrix spectrum Bloch vector parallel to “cut”

A _A A _g
P1, X € éL ppoxe °F

uakJ_

® “Entanglement spectrum”: | €ak.R = 108 ( v
ak |

Oék‘,J_




generic “entanglement spectrum’” of a band insulator

® |evels below 0
occupied in “ground
state” (dominant term
in (Schmidt)
expansion)

varies as lattice plane
of cut is moved: bands
move from empty to
filled region(spectral

flow) T

(quite different if a Fermi surface is present)




spectrum with a Fermi surface
o f

t\i : T L

Kot : >

ermi surface 1

s v Fermi surface
in this range

levels coalesce into a continuum if a Fermi surface is present
(density of states proportional to log(width) for a finite width (not semi-infinite) region.




topologically-non-trivial “band insulator”
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® topologically-non-trivial filled bands show
“spectral flow” as a function of k|




2D zero-field Quantized
Hall Effect

FDMH, Phys. Rev. Lett. 61,2015 (1988).

FIG. 1. The honeycomb-net model (“2D graphite”) showing

® 2D quantized Hall effect: O'Xy = Ve2 / h. Inthe nearest-neighbor bonds (solid lines) and second-neighbor bonds
. . . (dashed lines). Open and solid points, respectively, mark the A4
absence of interactions between the P&I"thleS,V and B sublattice sites. The Wigner-Seitz unit cell is con-

must be an integel”. There are no Current-carr’ying veniently centered on the point of sixfold rotation symmetry

. . . . (marked “#*”’) and is then bounded by the hexagon of nearest-
states at the Fermi level in the interior of a QHE neighbor bonds. Arrows on second-neighbor bonds mark the

system (a” such states are localized on its edge!. directions of positive phase hopping in the state with broken
time-reversal invariance.

The 2D integer QHE does NOT require Landau

levels, and can occur if time-reversal symmetry is

broken even if there is no net magnetic flux through

the unit cell of a periodic system. (This was first

demonstrated in an explicit “graphene” model h
shown at the right.).

-3/3 v=0
Electronic states are “simple” Bloch states! (real m 0 T o

ﬂrst-neighbor hopp|ng t,, Complex second-neighbor FIG. 2. Phase diagram of the spinless electron model with
. |t2/t1] < 5. Zero-field quantum Hall effect phases (v=*1,

hopping t,el®, alternating onsite potential M.) where o =ve?/h) occur if | M/t2| <3v/3|sing|. This figure
assumes that ¢, is positive; if it is negative, v changes sign. At

the phase boundaries separating the anomalous and normal

(v=0) semiconductor phases, the low-energy excitations of the

model simulate undoubled massless chiral relativistic fermions.




single-particle entanglement spectrum (schematic, but
confirmed by actual calculations,WIP) (Zig-zag cut)

generates free
fermion cft (c=1)
as full entanglement
spectrum.

“spectral flow” from
L to R as k,changes
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entanglement
spectrum across
“zigzag’ cut

(“graphene”with T and | breaking)
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® Gapless nature of “entanglement spectrum”
seems quite universal in topological order

® Simple “ideal states” have less quantum
fluctuations than generic ones, have ONLY the
(required) spectrum of the topological order.

® spectrum seems to be a more useful
characterization of entanglement than “just” a
single number, the Von Neumann entropy.




