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Some reasons why quantum Hall
systems are still very interesting

Systems are very rich.  Many different phases and phase
transitions.

Theory is complex.  Uses a wide variety of mathematical
techniques, theoretical methods.

Systems exhibit a variety of striking phenomena.

Quantum Hall effects observed in new materials, and with
new or improved techniques.

Continuing experimental surprises.

Many unanswered questions.



Many open questions concern the nature of
states in bulk 2D systems

Especially:

What is the nature of QHE states observed in the second Landau
level:  eg. 5/2, 7/3, 8/3, 12/5 ? Are some or all of them
non-Abelian?   Too difficult for theory or experiment alone to
decide.

What is the role of sample parameters, including electron density,
well thickness, and disorder, in determining the nature of the
ground state?



Other open questions concerning bulk 2D
systems

Finite temperature effects, particularly in the presences of disorder:

When should  there be “phases” at intermediate
temperatures that are not observed at T =0?

What determines the activation gaps actually observed in
QHE systems?

Phase transitions in multi-valley systems (e.g., graphene, AlAs)

Phenomena in bi-layer systems.

Phenomena in higher Landau levels, including stripe and bubble
phases, microwave-induced resistance oscillations,etc.



Other open questions concern edges, or
mesoscopic geometries

Transport in systems with a narrow constriction (quantum
point contact), including shot noise and current correlation
experiments.

Systems with two or more constrictions, including
interferometer geometries.

Experiments on edges may be a way of learning about the
bulk states.  Or, may be determined by non-universal
properties of edges.  Interesting in their own right.



Interference experiments have been suggested
as a way to determine whether the ν=5/2 state

has non-Abelian statistics.

But:   Real interference experiments have
complications, even in simpler cases of integer QHE or
odd-denominator fractions, which we need to
understand, and have not been well understood in the
past.

We shall focus here on the Integer QHE.



Key Experimental Developments

Improved methods of gating and separately controlling densities in
bulk and in regions of constrictions.

Samples of very different  sizes.

Continuous measurements of resistance oscillations as a function
of both magnetic field B and side-gate voltage VG.

Find regions of qualitatively different behavior distinguished by
sign of slope of lines of constant phase.



Measure in a 2D plane of B and VG
“Coulomb Dominated” “Aharonov-Bohm” 

Two types of behavior

Yiming Zhang et al:



Fabry Perot Interferometer--Integer Regime
Assumptions

In constrictions: fT channels are perfectly transmitted,
corresponding to levels j = 1, 2, ..fT . (Number may be zero).

One channel, j0 = fT +1,  is partially backscattered.

Additional channels with j > j0 may exist in bulk, but do not
enter constrictions.  Can happen if density in bulk is larger than
density in constrictions.

Filling factor in constriction is νc  , with  fT < νc  < fT+1.



Fabry Perot Interferometer--Integer Regime:
Illustration

Black dotted lines: weak back scattering: fT=1, νc = 2-ε .

Blue dashed lines: weak forward scattering: fT=2, νc = 2+ε .

Bulk filling factor = 3 ± ε .



Weak Backscattering Limit

Partially transmitted channel, j0 = fT +1,  is weakly
backscattered.

Filling factor in constriction is νc  = j0 - ε .

For small source-drain voltage, RD will have oscillatory part

δRD ∝ Re [r1r2* eiφ ] ;   φ is the phase accumulation  φj of the
partially transmitted edge state, j = j0.

We must calculate this phase.



Structure of an edge

General picture:  The electron density varies gradually at an edge, usually on a
length scale larger than the magnetic length.  Each (spin-split)  Landau level j is
a band of localized states, with an extended state in the middle, whose energy
depends on position x.

The edge state  for  Landau level j occurs at a (guiding center)  position Xj
where the extended state crosses the Fermi energy.  For x>Xj,  we find localized
electrons, in states with  E<Ej.  For x<Xj , we have a filled Landau level + holes
in localized states above EF.

Position of edge state Xj

Localized electrons

Localized  holes Extended states

EF



Phase change around edge, for Landau level j is determined by
the  number of flux quanta Nj in the area Aj enclosed by the
guiding center:

Nj is an integer for closed edges.

Nj can vary continuously for open edge states.

Total charge in Landau Level is given by   Qj = Nj+Pj - Hj

Pj = number of electrons in localized states outside of Aj

Hj = number of holes in localized states inside of Aj

Pj and Hj are integers

Charge in a Landau Level



Energy Considerations



Justification for Capacitance Charging Model

Electrons and holes in localized states have a small but
finite conductivity at finite temperatures.  Interior of
island behaves like a good screening metal on laboratory
time scales; charges equilibrate to give a constant
potential in equilibrium.



“Aharonov-Bohm” Regime

Limit K → 0 . (Very large area island, with top gate)

E = (B2/2) ∑ Uij (ΔAi)(ΔAj)

Neglect coupling to any edge states trapped in the island (j>j0).

Minimize energy by setting ΔAj = 0 , for j ≤ j0 .

φ /2π  = B0 A0 + A0 δB + B δAG .

Lines of constant φ have: A0 δB + B δAG = constant

Negative slope on plot of (B,VG)

Field Period ΔB = 1/A0:    one flux quantum in area Ao.
Area Period ΔAG =  1/B .      (Units:  Φ0 = 1)



“Coulomb-Dominated” Regime

Assume K >> Uij .  (Charging energy dominates)

Also, assume partially transmitted edge j0 is less stiff than fully
transmitted edges.  Then minimizing E with respect to  Aj gives

 φ/2π  ≈  n0A0 + n0 δAG +A0 δnG - fTB (A0 + δAG) + integer

Integer depends on occupations of localized states; can change if an
electron hops from localized state to open edge. This changes phase
by 2π, has no effect on interference.

Ignore integer, vary B, VG,  find

δφ/2π = A0 δnG + (n0 - fTB) δAG - fT A0 δB  [linear in δB and VG]



Coulomb-Dominated Regime: Implications

δφ/2π = A0 δnG + (n0 - fTB) δAG - fT A0 δB

If fT > 0,  lines of constant φ have positive slope, in (B,VG)
plane . (Since δAG = α VG,  δnG = β VG with α, β > 0.)

If fT = 0,  φ is independent of δB.  (Lines are horizontal).
This is the case when constrictions are at νc = 1- ε .

Find: Flux period:  ΔB = (-1/fT) A0
-1 .  (Flux quantum / fT)

Area Period: ΔAG = 1 / (n0 - fTB)  .

Back-gate period:  ΔnG = 1/ A0 .



What about cases intermediate between
Aharonov-Bohm and Coulomb-dominated

regimes?



Intermediate Coupling Cases

AB CD

 (νc = 2 - ε ;  fT = 1 )    Calculations by B. Rosenow

VG

B

Re <eiφ>

   T ≠ 0



Intermediate and strong backscattering

So far we have discussed weak back scattering:

νc = fT+1-ε .

Field  period is expected to be constant in entire range of
constriction fillings  fT < νc < fT+1 .

A0  ΔB = (-1/fT) .

Period changes when you cross a plateau.

Consistent with experiments.

(Gate periods are more complicated.)



Data - 2 µm2 device

Zhang et al, Coulomb-dominated regime



Comparison to earlier work:
Present results in Coulomb dominated regime are equivalent to
previous results of Rosenow and Halperin  (PRL 2007) in the
limit of strong backscattering, and also in the limit of weak back
scattering,  if one takes ratio of coupling constants ΔX / Δ = 1 in
that paper.  Aharonov Bohm regime is ΔX / Δ = 0.  Previous paper
did not explain why one should have ΔX / Δ = 1 for small islands.

Also, did not consider sign of the slopes of constant phase lines in
the (B,VG) plane.



Finite Source-Drain Voltage V
Apply finite voltages, V1 and V2 to opposite edges.  Predict:

δI ∝ F (V )  cos [φ0 + Φ] ,    V  ≡ V1-V2 , where

F(V) is an envelope function that is non-monotonic in V,
φ0 is interference phase at V=0,
Φ = (aV1 + bV2) is an extra phase shift linear in V.

In most cases, a and b are small, so Φ can be neglected.

For the case of a single edge state (ν=1), in the weak
backscattering regime, it was found by  Chamon et al.
(1997) that

F(V) ∝ sin (V τ)

where  τ is the time for an electron to move half-way
around the island.



Finite V, Multiple Edge States
Total number of edge states in bulk  = fb > 1.   Bare velocities uj,
with 1≤ j ≤ fb. Due to strong Coulomb coupling between modes
on a single edge, new velocity eigenmodes vk.  Charge mode
with large vc, remaining modes slow, with uk > vk > uk+1.

Note:  Here we are concerned with fast transport around edge;
no time for screening by localized states.

Assume one mode (j=j0)   partially transmitted through
constrictions, weak backscattering.  Ignore extra phase shift Φ.

Result: δI ∝ F(V) cos φ0 , but F is not a simple sine function.

However, if velocities of adjacent modes are not too different:

F(V) ≈   (Vτ)-x  sin (V + η) ,    for Vτ  >1,

with τ ≈ L/2vj, for  j=j0,  and x = 1/fb.



Finite V:  Experiments
Zhang et al. apply voltage V to one side, measure dI/dV.

If we use approximate formula: δI ∝ sin (V τ)  cos φ0 , we find

                    dI/dV ∝ cos (Vτ) cos φ0 ,

(product of two independent cosines).

Experiments of Zhang et al, in Aharonov Bohm regime, agree
with this form.



Non-linear Regime

Data Model

Y. Zhang et al.:



Fractional Quantized Hall States

Methods can also be applied to fractional quantized Hall edge
states. Must take account of fractional charges and fractional
statistics (i.e, effective magnetic flux associated with addition of
quasiparticles).  Do bookkeeping carefully.

Example:  For constrictions with  1/3 < νc< 2/5, find:

Field period  ΔB = -1/A0,  ( addition of one flux quantum),
same as integer regime with 1 < νc< 2.



Finite Source-Drain Voltage V
Apply finite voltages V1 and V2 to opposite edges.

Prediction of Chamon et al (1997) (single edge state)

δI ∝ sin (V τ)  cos φ0 ,      V  ≡ V1-V2

where φ0 is interference phase at V=0, and τ is the time
for a particle to move across one edge of the island. We
find extra phase shift linear in voltages, so

δI ∝ sin (V τ)  cos [φ0 + Φ] ,

 Φ = (aV1 + bV2) τ.

In many cases, a and b are <<1, so reduces to Chamon
et al.  In other cases,  a, b  may be important.

If system is symmetric, (a=b) and if voltage is applied
to both edges (V1= -V2 ≡ V/2), then Φ = 0 .


