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Topological (gapped) phases in 2 + 1 are related to modular 
tensor categories

Conformal blocks as trial wavefunctions give same MTC as 
their RCFT, or else gapless

---non-unitary cases

Hall viscosity: new fundamental physics

adiabatic transport approach

connection with orbital spin

effective field theory (w. W. Goldberger)

numerical calculations (w. E. Rezayi)

N. Read, Phys. Rev. B 79, 045308 (2009)



Gapped (topological) phase in 2+1

→ 2+1 Topological Quantum Field Theory (TQFT) 

or modular tensor category

Moore + Seiberg, Witten, Reshitikhin + Turaev (1988 – 90)

--Finite set of quasiparticle types α

--Fusion: integers

→ degeneracy of n well-separated qptcles all of type α

as                  .   



Operations (linear maps) on these spaces:                       

--Braiding (exchange of qptcles)
Braid gp rep, YB eq

--Creation/destruction of qptcle/antiptcle pair

--Twist (rotation of a qptcle by     ), produces phase factor

+ further conditions. This structure is called a ribbon tensor    
category.

Use to define quantum dimension        , each α.

Also        matrix; modular TC (MTC) if      invertible. 



Hermitian structure: inner product on the spaces.  Turaev (1994)

“Unitary” MTC if positive definite . This captures   positivity of QM  . 

In particular,             and largest eval of        is        .

Rational conformal field theories (RCFTs) also produce an MTC. 
Moore and Seiberg (1988)

Non-unitary RCFTs (in 2D sense) contain some conf weight h<0 and

some      is negative, in every known case.

What is relation between “unitary” in 2D RCFT and in 3D TQFT?



Conformal blocks as trial wavefunctions

Conformal blocks come from RCFTs:    Moore and NR (1991)

Blocks       are analytic but multivalued functions in       
---“monodromy” under e.g. braiding

Many QH trial wavefunctions are conformal blocks, e.g.

and with quasiholes at       also.

Usual inner product                   



For braiding and twist in a top phase, must calculate them 
by adiabatic transport  (Berry phase/matrix): for        orthonormal

where

If also        are holomorphic in w, then 

as desired in MR (1991).



As       is holomorphic in     , issue is orthonormality

Integrals over z  and definition of conformal blocks →
(go grand canonical)

---CFT perturbed by . What is long-distance behavior of 
perturbed thy?

---- 1) massive
---- 2) massless
---- 3) other?



Correlators generically go to constants as                   

But         cannot all be non-zero because of monodromy: 

These imply that

Schur’s lemma implies 

follows!

1) Massive 2D phase

Like order/disorder operators
in stat.mech/field thy



2) Massless 2D phase

→get power-law corrections to holonomy
---no good in a gapped phase (and other problems)
---probably gapless

3) Other ?
Worse!



Can do quasihole spin (twist) similarly               NR (2008)

Then either MTC obtained is that of the RCFT, or system
is gapless.

But use of non-unitary RCFT will produce some negative
, not acceptable in QM top. phase.   E.g. Bernevig and Haldane (2008)

Hence these states must be gapless.



Hall Viscosity
Avron, Seiler, and Zograf (1995)

Hall viscosity is the viscosity analog of Hall conductivity: 

stress                                       strain

pressure/elasticity                         viscosity

so

Symmetric part                                gives dissipation

Antisymmetric (Hall) part                              non-dissipative

---odd under time-reversal symmetry
---in d=2 isotropic system, only one ind comp:



In a top phase, comes from response to varying metric instead of strain, 
for fixed coordinate system (no independent velocity)
---for torus, equivalent to changing (complex) aspect ratio    at fixed area:

Hall viscosity is equal to the adiabatic curvature (curl of Berry 
vector potential) in     space                   , divided by area 

For              filled Landau levels:

(     is the particle density) --- ind of     !

Avron, Seiler, and Zograf (1995)

Avron, Seiler, and Zograf (1995)
(factor of 2: Vignale and Tokatly, 2008)
Levay (1995)



For (i) paired superfluids (e.g. p+ip), and (ii) conformal blocks used 
as trial QH wavefunctions

where      is (minus) the mean orbital spin per particle:

1/2                 for p-ip
=       Q/2                for Laughlin   state

for general conformal block states

where       is the shift on the sphere:

Should be:
---quantized within trans/rot invariant topological phase
---general result for all such phases         (Other fluids?)

NR (2009)

(“real” spin neglected here)



For classical plasma   

--- electron in     th LL has orbital spin                ,
due to cyclotron motion.  This equals kinetic energy /      .

Hence thermal average at high T (using equipartition)  

and 

Lifshitz and Pitaevskii, Physical Kinetics

cf. Levay (1995)

NR (2009)



Fix coordinates                                                 ,  metric is

Under an “active” coordinate transformation in                                   

the change in        at fixed area A is described by

E.g. under small transformations                                real,

(square) undergoes                                  --- two distinct shears.

Commutator is --- an SO(2) rotation! 

Leaves        invariant --- rotation of space.

Relation to spin

cf. Levay (1995)



Adiabatic curvature (curl of Berry connection) is given by the commutator
of transformations, evaluated on a state, so picks up expectation of
generator of                   .  But as this is equivalent to rotation in real space, 

we identify eigenvalue as “orbital spin”. Note the upper half-plane (    space) is

[Cf. adiabatic rotations of coherent state for SU(2) spin, for spin in z direction,
rotations about x and y commute to give      , and pick up expectation value. 
Note the space is                                  .]

In a topological phase, adiabatic curvature is               -invariant on upper-half 
-plane (like that on sphere for spin).



Induced action for a 2+1 topological phase in external electromagnetic 
and gravitational fields: 

= e.m. vector potential,       = the spin connection for SO(2) 
spatial rotations only.

Vary wrt and integrate, use Gauss-Bonnet Theorem 
on genus     surface (            is the sphere), 

so     is the shift. Coupling of orbital spin to curvature of space. 

Effective field theory

Wen-Zee term

NR, Goldberger, to appear

Wen and Zee (1992)

Chern-Simons term



Induced action has local Galilean, not Lorentz, invariance. 

Apply to variation of    for torus: use                         and

R vanishes, reproduces the adiabatic Hall viscosity result. 
---explains why the shift and Hall viscosity are related by        .

Like the Chern-Simons term, the Wen-Zee term cannot be renormalized,
because it is not the integral of a local gauge-invariant combination of fields.
(Or because of angular momentum conservation in perturbative corrections.)

Hence the result for           from trial wavefunctions will hold throughout a 
trans/rot inv topological phase.

Varying wrt metric gives (complicated) expression for stress tensor 
of QH state.

NR, Goldberger, to appear



Use of Hall viscosity as a diagnostic tool for numerics:
Measure shift on torus (unbiased) instead of extrapolating energies 
for different shifts on sphere. Don’t need the trial state.

Numerical approach:
---evaluate Berry phase    for a loop     in    of      discrete steps as

Use     small,       large. Divide     by area of     , and by  to get     .

For trial states (Laughlin, Moore-Read), confirm expected values when
sufficiently large.

Rezayi, NR, in progress





(Q=1)



(Q=2)





Conclusion

1)     Adiabatic statistics: either given by the monodromy of blocks,

or state not gapped

2)     Trial functions from non-unitary RCFTs don’t give a top. phase 

3)     Hall viscosity: new bit of basic physics

potential use in numerical diagnostics
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