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Localized Cooper Pairs in Nano-honeycomb Films 
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• Superconductor Insulator 
Transitions (SIT’s)

• The amorphous film puzzle
• Watching Cooper Pairs in 

Nano-honeycomb Films
• Comparisons and questions

Leon Cooper
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What’s the insulating phase?

localized Cooper pairs (bosons)
or

localized electrons (fermions)
 or 

novel mixture

amorphous-Bi films
Haviland, Liu and Goldman

Amplitude variations in a magnetic field 
Yonatan Dubi, Yigal Meir &  Yshai Avishai, Nature(2007)



Magnetic Field Tuned SIT
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(Hebard and Paalanen)
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Spectacular Peaks...
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Steiner, Boebinger and Kapitulnik 2005

Indium Oxide
 Film

decreasing
 temperaturesuperconductor



Destroying Superconductivity
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Create phase fluctuations
∂φ12

∂t
∝ V12 "= 0 ∇φ ∝ Js #= 0and

gives resistance, maintains pairing!

Ψ = ∆1/2eiφ



Imagine an islanded film
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φ1

φ2

φi

Does this film superconduct?
or, equivalently

Do the islands become phase coherent?

superconducting
 islands



SIT via Phase Fluctuations
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Insulating
phases on islands incoherent

Superconducting
phases on islands coherent

Island Tc is constant while
phase fluctuates

Granular Sn Films



  Phase and number uncertainty relation:                            δNcpδφ ≥ 1
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φi

Insulator:  
Cooper pairs localized to islands

Phase fluctuations large

δNcp = 0

δφ != 0

Superconductor:
Cooper pairs delocalized

Phase fluctuations small

δNcp != 0

δφ = 0

SIT via Phase Fluctuations



H ∼
∑

i,j

[
(2e)2

C Ncp,iNcp,j − EJ(cos(φi − φj −Ai,j))
]

Josephson Junction Array (JJA) 
Model of the SIT
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Model neighboring grains:
capacitance, C   tunneling rate, EJ 

φjφi =

discourages charge 
fluctuations

Ec =
(2e)2

C
>> EJ

 discourages phase 
fluctuations

EJ >> Ec



JJA SIT Model

•Predicts bosonic insulators!

•Qualitatively works for 

•Does it work for all systems?
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Destroying Superconductivity
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Reduce the amplitude

Tc → 0 ncp → 0∆→�

ground state of fermions

Ψ = ∆1/2eiφ
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amorphous-Bi films
Haviland, Liu and Goldman

Tc decreases

Thin homogeneous, amorphous films

SIT via Amplitude Reduction?

high Tc low Tc

Idea: Decrease Tc by decreasing nsc 
by decreasing the film thickness

suggests the insulator does not have 
pairs.....



But, amorphous Indium Oxide...

amorphous-Indium Oxide 
(Hebard and Paalanen)

H↑

substrate

magnetic field, H

....looks like phase destruction



Cooper Pairs in amorphous films?

• Need a detection method

• Cooper pairs were originally observed in 
multiply connected geometries

• Strategy:  
– Use Nano-honeycomb Hole Array substrates
– Investigate SIT’s
– Compare to unpatterned films



Nano-honeycomb Films

ξo

λ⊥ ≈ 1 mm



Cooper Pair Detection (q=2e)

!∇φ = 2e(
−→
A + Λ

−→
J s)

Cooper pair phase obeysS

frustration

period
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H
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−→p canonical = −→p + q
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A

Charge in a magnetic field

HM =
h

2eS

⇒  flux periodic properties



Thickness Tuned SIT’s
amorphous Bi films 
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Sh
ee

t R
es

is
ta

nc
e 

(Ω
/□

)

Unpatterned

Temperature (K)
Sh

ee
t R

es
is

ta
nc

e 
(Ω

/□
)

Nano-honeycomb

Features: Reentrance, stronger 
insulator, broad superconducting 
transition



Unpatterned films make “weak” 
insulators

∆G ∼ log(T )
Insulator’s conductance: 

IST of a-Bi/Sb films
PRB 59, 11209 (1999)

∆G
 (1

/k
Ω

)

Log [T(K)]
0 1-1

R
□ 

(k
Ω

)

⇒ weakly localized 
insulator of fermions



NHC film insulator is strongly localized

R=R0 exp(-To/T)

NHC films



Insulating NHC Film in Magnetic Field

f= H/HM

H



Insulator exhibits flux oscillations!

1)  Period: HM = h/2eS  

        ⇒  2e charge carriers

2)  Activation energy oscillates



Energy scales in the insulator

Unpatterned 
film

To 
(f=0)

To 
(f=1/2)

Oscillations

IST where To → 0



Questions?

• What’s the transport process near IST? far from IST?

• What’s localizing the CP’s?

• How localized are the CP’s? 

ξloc > S1/2know



T0 = (g(EF )πξ2
locd)−1

For T0 = 1 K, need ξloc < 10 nm

which is too small for oscillations.

Nearest neighbor hopping?



Does JJA physics apply?

?
grain

JJ

=



JJA picture

For L = 50 nm, Ec = 104K/ε

Too large to be relevant!

Estimate :

Effective islands 
encompass many holes?  

--- Need 1000’s of holes

L

Ec ≅
4e2

εε0L



Tentative Picture of Insulator

• Cooper pairs localized over many holes

• Magnetic field reduces Ej up to f=1/2 
– increases localization, which 

increases Coulomb barrier

• Extraordinary resistance 
– q=2e Coulomb barrier 4x larger than 

q=e barrier



Oscillations persist into SC phase
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Multiple Field Tuned SIT’s
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Field tuned SIT – NHC films

1. Reentrant
2. Parameterize data - R=Roexp(To(H) /T) 
3. Nearly metallic around the critical point.



Comparison to Unpatterned Indium 
Oxide Films

Activated
Sambandamurthy et al., PRL 

107005 (2004)

Reentrance
Hebard and Paalanen, PRL 65, 

927 (1990)



Spectacular Peaks...
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Steiner, Boebinger and Kapitulnik 2005

Indium Oxide
 Film

decreasing
 temperaturesuperconductor
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Peak!



Magnetic Field (T)
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At the Highest Fields
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∆G ∼ log(T )
Fermion’s are back! 



Magnetic Field (T)
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bosons

fermions



Thickness tuned IST in NHC Films

• “See” strongly localized CP’s

• CP transport near SIT 

• Vanishing energy scale at IST 

• Patterning enhances CP localization
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