

Quantum Oscillations in Weyl and Dirac Semimetals

Andrew C. Potter UC Berkeley

- 1. ACP, I Kimchi, A. Vishwanath Nat. Comm '14
- 2. P. Moll, N.L. Nair, T. Helm, ACP, I. Kimchi, A. Vishwanath, J. Analytis arXiv:1505.02817

A flurry of Weyl materials

Original proposal: pyrochlore iridates

Wan, Turner, Vishwanath, Savrasov; Witzcak-Krempa, YB Kim

Weyl - TaAs, NbAs, NbP

TaAs ARPES 1.0 1.0 1.0 1.5 1.0 0.0 1.5 1.0 0.5 0.0 -0.5 -1.0

Figure - Xu et al. arXiv '15 (Hasan group)

Xu et al. 'Science '15; Lv et al. PRX '15; Huang et al. Nat Comm '15;

Dirac - Cd₃As₂, Na₃Bi

Z Wang, et al. PRB '13; Neupane et al. Nat Comm '13; Borisenko et al. PRL '14; Liu et al. '13; Xu et al. '13; many others...

Topology without a band-gap

Chirality <=> Chern monopoles

Adler, Bell, Jackiw

Key players:

- Chiral bulk Landau level
- Surface Fermi-arcs

Wan, Turner, Vishwanath, Savrasov

Plan

Goal: Experimental probe of surface topology and bulk chiral anomaly physics

Quantum oscillations in a magnetic field

- 1. Semiclassical description ACP, Kimchi, Vishwanath Nat Comm '14
- 2. Experimental data (Cd₃As₂) -

P. Moll, et al. (Analytis group) arXiv:1505.02817

1. Theory - Oscillations from Weyl surface arcs

ACP, I Kimchi, A. Vishwanath Nat. Comm '14

(Berkeley -> MIT)

Reminder - Quantum Oscillations in a Field

Quantized Magnetic orbits => Periodic-in-1/B modulation of DOS

1/B Frequency ~ k-space area

Observable in:

- Magnetization (de Haas van Alphen)
- Conductivity (Shubnikov de Haas)
- Tunneling density of states (Landau level spectroscopy)
- etc...

ACP, I.Kimchi, A. Vishwanath, Nature Communications (2014)

Some remarks

- Closed magnetic orbit around non-local Fermi surface
- Real space trajectory encloses no flux
- Occurs at all energies where there is a Chiral bulk LL

Quantum oscillations from a non-local Fermi surface

Quantization of semiclassical orbits

$$arepsilon_n pprox rac{2\pi n + \gamma}{t} pprox rac{2\pi n + \gamma}{2\left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ lacksquare$$
 Arc Bulk

Quantum oscillations

$$rac{1}{B_n} = rac{2\pi n}{f_{1/B}} - rac{e}{k_{
m arc}} L$$

 $f_{1/B}$

ACP, I.Kimchi, A. Vishwanath, Nature Communications (2014)

Quantum oscillations from a non-local Fermi surface

Quantization of semiclassical orbits

$$arepsilon_n pprox rac{2\pi n + \gamma}{t} pprox rac{2\pi n + \gamma}{2\left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v}
ight)} \ rac{1}{2} \left(rac{k_{
m arc}}{evB} + rac{L}{v} + rac{L$$

Quantum oscillations

$$\frac{1}{B_n} = \frac{2\pi n}{f_{1/B}} - \frac{e}{k_{\rm arc}} L$$

$$f_{1/B}$$

ACP, I.Kimchi, A. Vishwanath, Nature Communications (2014)

Fermi Arc Quantum Oscillations - Remarks

Experimental signature of topological surface-bulk connection

Characteristic thickness dependence

$$\frac{1}{B_n} = \frac{2\pi n}{f_{1/B}} \times \cos \theta - \frac{e}{k_{\rm arc}} L$$

Practical consideration - Disorder

• Need L < MFP (can be 100's of nm, e.g. Cd₃As₂)

Related Measurement - Cyclotron resonance

$$\omega_{\rm res} pprox rac{\pi}{rac{k_{
m arc}}{evB} + L/v}$$

$$\lambda_{\rm res} \gtrsim \frac{c}{v} L$$

- Cyclotron frequency saturates at B ~ 1/L
- Polarization dependence
- Anomalous skin-depth effect
 => surface sensitivity

Y Baum, E Berg, SA Parameswaran, A Stern unpublished

2. Experiment - Cd3As2 magnetotransport

P. Moll, N.L. Nair, T. Helm, A.C. Potter, I. Kimchi, A. Vishwanath, J. Analytis arXiv:1505.02817

(Berkeley -> MPI)

SdH Oscillations in Cd₃As₂ Microstructures

Surface and Bulk Oscillations

Surface and Bulk Oscillations

What is the source of the surface signal?

Surface States of Dirac Semimetals

Surface States of Dirac Semimetals

Possible Surface States:

- 1. Arcs (Weyl-like)
- 2. Helical (TI-like)
- 3. Conventional (non-topological)

Thickness Dependence

(B Parallel to surface only)

Thickness Dependence

Thickness L (nm)

Frequency (T)

(B Parallel to surface only)

Thickness Dependence

$$A_{\rm SdH} \sim e^{-1/\omega_c \tau}$$

"
$$\frac{1}{\omega_c \tau}$$
" $\approx \frac{k_0}{e v_s B} \tau_s^{-1} + \frac{L}{v_B} \tau_B^{-1}$

$$\mathrm{But...} \quad \frac{1}{\rho_{\mathrm{tot}}} = \frac{1}{\rho_s} + \frac{1}{\rho_b}$$

(B Parallel to surface only)

$$\ell_{\mathrm{MFP}} \approx 1.2 \mu m$$

Geometric Interference - Triangle Device

(same surface-bulk ratio)

Analogy: Josephson junction in magnetic field

Geometric Interference - Triangle Device

(same surface-bulk ratio)

$$\frac{1}{B_n} = \frac{2\pi n}{f_{1/B}} - \frac{e}{k_{\rm arc}} L$$

Analogy: Josephson junction in magnetic field

Geometric Interference - Triangle Device

(same surface-bulk ratio)

$$\frac{1}{B_n} = \frac{2\pi n}{f_{1/B}} - \frac{e}{k_{\rm arc}} L$$

Analogy: Josephson junction in magnetic field

- 1. Conventional
- 2. Helical (TI-like)
- 3. Arcs (Weyl-like)

Non-Adiabatic Corrections

Not spin-splitting

- asymmetric lineshape,
- wrong sign for TI,
- magnitude requires unphysically large g~300

Thickness Dependence

- Seen in thin films
- Oscillations require parallel surfaces
- Thickness dependent saturation field: B_{sat} ~ 1/L

- Surface state 1/cos dependence
- Thickness dependent offset of peak positions (Lower doping?)

Thickness Dependence

- Seen in thin films
- Oscillations require parallel surfaces
- Thickness dependent saturation field: B_{sat} ~ 1/L

- Surface state 1/cos dependence
- Thickness dependent offset of peak positions (Lower doping?)

Thickness Dependence

- Seen in thin films
- Oscillations require parallel surfaces
- Thickness dependent saturation field: B_{sat} ~ 1/L

- Surface state 1/cos dependence
- Thickness dependent offset of peak positions (Lower doping?)

Thickness Dependence

- Seen in thin films
- Oscillations require parallel surfaces
- Thickness dependent saturation field: B_{sat} ~ 1/L

- Surface state 1/cos dependence
- Thickness dependent offset of peak positions (Lower doping?)

Thickness Dependence

- Seen in thin films
- Oscillations require parallel surfaces
- Thickness dependent saturation field: B_{sat} ~ 1/L

- Surface state 1/cos dependence
- Thickness dependent offset of peak positions (Lower doping?)

Thickness Dependence

- Seen in thin films
- Oscillations require parallel surfaces
- Thickness dependent saturation field: B_{sat} ~ 1/L

- Surface state 1/cos dependence
- Thickness dependent offset of peak positions (?) (Lower doping?)

Summary and Open Questions

Quantum oscillations

 Experimental probe of surface arcs + Bulk chiral charge pumping ("anomaly" physics)

Cd₃As₂ Microstructures

- Clear sign of surface states in SdH oscillations
- Evidence consistent with Fermi-arcs

Questions & Future directions:

- Other materials?
 TaAs? many, long arcs could be complicated
- Related measurements: Cyclotron resonance?

Advertisement - Diagnosing a Weyl semimetal (NbAs)

Torque reversal at quantum limit = symptom of chiral fermions

P. Moll, ACP et al. (J. Analytis Group) arXiv:1507.06981

References:

- 1. ACP, I Kimchi, A. Vishwanath Nat. Comm '14
- 2. P. Moll, et al. arXiv:1505.02817, arXiv:1507.06981

Thank you for your attention

Weyl Quantum Oscillations - Numerics

