

KITP

July 2015

Spin Excitations in Stoichiometric Yb₂Ti₂O₇

Kate A. Ross¹, E. Kermarrec², J. Gaudet², B. D. Gaulin² ¹ NIST Center for Neutron Research & JHU (now Colorado State University) ² McMaster University

Yb₂Ti₂O₇ 100 mK

Outline

- Anisotropic exchange in rare-earth pyrochlores
- "Stoichiometric" vs. "Stuffed" Yb₂Ti₂O₇
- Elastic and inelastic neutron scattering on stoichiometric Yb₂Ti₂O₇ powders
 - development of 50% long range ordered moment
 - Unconventional, gapless spin excitations
- Comparison to excitations in crystals and Yb₂Sn₂O₇

Anisotropic Exchange in Pyrochlores

$R_2 Ti_2 O_7 (R = Yb^{3+}, Er^{3+}, Ho^{3+}, Dy^{3+} etc.)$

- Rare-Earth Oxides: dominant spin orbit coupling
- Moments described by total angular momentum, J
- low temperatures: anisotropic g-tensors and exchange interactions
- Can get anything from long range AFM order to spin ice depending on details

Anisotropic Exchange in Pyrochlores

- Pyrochlore: 4 Symmetryallowed exchange parameters (J_{zz}, J_±, J_{±±}, J_{z±})
- Yb₂Ti₂O₇: XY-like g-tensor, but strong exchange coupling with Ising components

$$H = \sum_{\langle ij \rangle} \left\{ J_{zz} S_{i}^{z} S_{j}^{z} - J_{\pm} (S_{i}^{+} S_{j}^{-} + S_{i}^{-} S_{j}^{+}) + J_{++} \left[\gamma_{ij} S_{i}^{+} S_{j}^{+} + \gamma_{ij}^{*} S_{i}^{-} S_{j}^{-} \right] \right.$$

$$+ J_{z\pm} \left[S_{i}^{z} (\zeta_{ij} S_{j}^{+} + \zeta_{ij}^{*} S_{j}^{-}) + i \leftrightarrow j \right] \right\}$$

K.A. Ross, L. Savary, B. D. Gaulin, and L. Balents, Phys. Rev. X 1, 021002 (2011)

Yb₂Ti₂O₇ Specific Heat

Powder samples

usually have sharper, higher temperature anomalies

- Some samples show signs of ferromagnetic order below T_c, others do not
 - Ordered moment size quoted from 0.8 to 1.1 µB (47 - 64% of total moment)
- Evidence for hysteresis at the sharper transitions: **first order**

Some single crystals do not order

K. A. Ross et al, PRL **103** 227202 (2009)

• Diffuse continuum-like scattering at low temperatures and low fields

•No sharp magnetic Bragg scattering below Tc

Evolution of $S(Q, \omega)$ in Single Crystals

Broad scattering develops into sharp magnons with increasing field (H || [1,-1,0]) K. A. Ross et al, PRL **103** 227202 (2009)

"Quantum Spin Ice" Exchange Parameters for Yb₂Ti₂O₇

K.A. Ross, L. Savary, B. D. Gaulin, and L. Balents, Phys. Rev. X 1, 021002 (2011)

What is the ground state?

Exchange parameters for Yb₂Ti₂O₇ compared to "Gauge Mean Field" phase diagram

 $L = (-0.5, -0.5, -0.5) \Gamma = (0, 0, 0)$

 $\Gamma = (2, 2, 2)$

 $\Gamma = (2, 2, 0)$

(1,1,0)

 $\Gamma = (1$

L. Savary, L. Balents, Phys. Rev. Lett. 108, 037202 (2012)

What is the ground state?

Yb₂Ti₂O₇ also lies "close" to a phase boundary between AFM and FM states

- New proposed parameters from other groups^[1,2] suggest Yb₂Ti₂O₇ is right on the edge of AFM order
- Do quantum fluctuations arise from proximity to AFM state?
- What role does the known sample dependence play?

[1] J. Robert, arXiv:1506.01729 [cond-mat.str-el] (2015)
[2] R. Coldea, KITP talk (<u>http://online.kitp.ucsb.edu/online/lsmatter15/coldea/</u>)

Powder vs.crystal: Log scale

Powder vs.crystal: Linear scale

K. A. Ross et al, PRB 84 174442 (2011)

Crushed Crystal vs. Sintered Powder

Structural difference between crushed crystal and sintered powder can be attributed to "stuffing" 2.3% excess Yb³⁺ on Ti⁴⁺ sublattice

Powder Diffraction data at 15 K

Stoichiometric powder

Crushed Crystal 2.3% stuffing

Ross et al, PRB **86**, 174424 (2012)

Crushed Crystal vs. Sintered Powder

What are the ground state magnetic properties of the stoichiometric powder?

Neutron Scattering Measurements at the NCNR

10 grams of the **previously studied stoichiometric powder sample**, sealed with 10 atm helium gas at room temperature

SPINS Triple Axis Spectrometer (Elastic)

Disk Chopper Spectrometer (inelastic)

"Elastic" Scattering in a Stoichiometric Powder

- Elastic scattering, $E = 0.0 \pm 0.25$ meV, at (111) Bragg Peak
- Increase of intensity visible in raw data

Stoichiometric Powder of Yb₂Ti₂O₇

- (111) peak: 3.2 % increase from 8 K to 100 mK
- similarly, 3.3(5) % increase on (113) peak, 3.6(6)% increase on (222)

Fit to Stoichiometric Model at T = 8K3 × 10⁴ Diffraction at 15 K Counts (3.49 × 10⁵ monitor units) (Ross et al, PRB 2012) 2.5 (311)(222)2.5 2 S(Q) arp. nuits 1.5 0.5 2.05 2.1 2.15 2.2 Q(Å-1) background from * sample environment 0.5 * * $\left(\right)$ (111)(002)(220)(113)(222)

Resolution-Limited Elastic Scattering (100mK - 8K)

Temperature dependence of (111)

- gradual decline of intensity at (111) on warming (1 mK / min)
- Same temperature dependence as the diffuse scattering near (111) in our crystal
- No sharp changes at T_c

[1] K. Ross et al, PRB 84, 174442 (2011)

Splayed Ferromagnetism

- Stoichiometric powder shows splayed "ice" ferromagnetism
- **0.90(6)** μ_B at 100 mK (compare to $\mu_{sat} = 1.7 \ \mu$ B, 53% ordered)
- Large splaying angle of the moments, 14° (compare to spin ice, 54°)
- No sharp onset at transition

Temperature Dependence of $S(Q,\omega)$

Temperature independence of spectrum

- Continuum of scattering extending to ~1.5 meV
 - No change in S(Q,w)
 up to 2.5 K:
 insensitive to the
 transition seen in
 the specific heat

Gapless Excitations Not Expected

Calculated zero-field spin waves

Measured Yb₂Ti₂O₇ 100 mK

Using Exchange parameters from Ross *et al*, Phys. Rev. X **1**, 021002 (2011)

Time-of-Flight Spectrometer (DCS)

Comparison to Crystals

- Lineshapes are essentially the same as for crystals
- •Is the spectrum insensitive to details of the transition seen in heat capacity?
- •Why is the spectrum insensitive to the presence or absence of order?

Powder

Inelastic Spectrum Compared to Yb₂Sn₂O₇

Thanks to C. Wiebe, H. Zhou, Z. Dun

Compare $Yb_2Sn_2O_7$ and $Yb_2Ti_2O_7$

Yb₂Sn₂O₇ 100 mK 20K background

Yb₂Ti₂O₇ 100 mK 8K background

See: Dun et al, PRB **87**, 134408 (2013)

Thanks to C. Weibe, H. Zhou, Z. Dun

Summary

- Yb₂Ti₂O₇'s true ground state has seemingly been obscured by sample dependence issues
- We showed elastic and inelastic neutron scattering studies of a powder sample known to be stoichiometric
- Partially ordered moment of ~0.9 μ_B (53 % ordered), consistent with splayed "Ice" ferromagnetism, Temp dependence does not correlate with anomaly in specific heat
- **Gapless, continuum-like** spectrum at 100 mK is not conventional magnons, is insensitive to details of transition, and strongly resembles Yb₂Sn₂O₇

Thanks to...

- Bruce Gaulin
- Edwin Kermarrec
- Jonathan Gaudet
- Juscelino Leao Jan Kycia
- Jiajia Wen

- Jeff Quilliam
- Lucile Savary
 - Leon Balents
- Chris Weibe
- Haidong Zhou
- Zhiling Dun

- Nick Butch
- Leland Harriger
- NSERC
- Department of Energy
- Colorado State University

Resolution-Limited Elastic Scattering (100mK - 8K)

Collinear model

AFM (psi2/psi3) model

Ordered Ice

