

Novel magnetism in d4 spin-orbit "Mott" insulators

Nandini Trivedi Physics Department The Ohio State University

Center of Emergent Materials NSF MRSEC – DMR

O. Nganba Meetei → Postdoc Cornell

Mohit Randeria

O. Nganba Meetei, W. S. Cole, M. Randeria, N.T PRB 91, 054412 (2015); *submitted Nov 2013*

Chris Svoboda

Energy Scales

	U	J _H	Acf	λ_{so}	
3d	3-5 eV	0.8-0.9ev	$\Delta \lesssim J_{H} < U$ High Spin	0.01-0.1ev	$\mu > \Delta_{cF} > \lambda_{so}$
4d	2-3eV	0.6-0.7eV	∆~ u>J _H	0.1 - 0.4 eV	$\mathcal{U} \simeq \Delta_{CF} > \gamma_{SO}$
5d	1-2 eV	0.4 -0.5ev	A≃u>J _H Low spin	0.4-1 eV	$u \simeq \Delta_{cf} \simeq \lambda_{so}$

different fillings in t2g j=1/2 j=3/2 d^5 d^4 d^3 d^3 d^3

iridates

d1: Chen, Pereira, Balents, PRB 82, 174440 2010

d2: Chen, Balents PRB 84, 094420 (2011)

d3: *Theory of High Tc Ferrimagnetism in a Multiorbital Mott Insulator* Sr2CoOsO6 Meetei, Erten, Randeria, NT, Woodward PRL 110, 087203 (2013)

High antiferromagnetic transition temperature of a honeycomb compound SrRu2O6

W. Tian, C. Svoboda, M. Ochi, M. Matsuda, H. B. Cao, J.-G. Cheng, B. C. Sales, D. G. Mandrus, R. Arita, NT, and J.-Q. Yan, arXiv 1504.03642

d5: iridates

d3-d3

Insulator High **Tc~720K** Net moment Non-monotonic M(T)

New Mott criterion:

$$\sqrt{U_{Cr} \cdot U_{Os}} > 2.5 W$$

Cr	Mn	Fe	Со	
Мо	Тс	Ru	Rh	
W	Re	Os	Ir	

Meetei, Erten, Randeria, NT, Woodward PRL 110, 087203 (2013)

What about other fillings?

d1: Chen, Pereira, Balents, PRB 82, 174440 2010

d2: Chen, Balents PRB 84, 094420 (2011)

d3: Theory of High Tc Ferrimagnetism in a Multiorbital Mott Insulator Sr2CoOsO6 Meetei, Erten, Randeria, NT, Woodward PRL 110, 087203 (2013)
High antiferromagnetic transition temperature of a honeycomb compound SrRu2O6
W. Tian, C. Svoboda, M. Ochi, M. Matsuda, H. B. Cao, J.-G. Cheng, B. C. Sales, D. G. Mandrus, R. Arita, NT, and J.-Q. Yan, arXiv 1504.03642
d5: iridates

Outline:

- (1) Puzzle of d4
- (2) Insights from exact 2 site calculation
- (3) Effective Hamiltonian: mean field theory
- (4) Predictions for RXS
- (5) Materials and Experiments

d4

Cr	Mn	Fe	Со
Мо	Тс	Ru(4+)	Rh(5+)
W	Re(3+)	Os(4+)	Ir(5+)

d⁴ systems are non-magnetic in atomic limit

Can there be any non-trivial magnetism in d⁴ systems?

Hopping induced Ferromagnetism in d4 system $H = H_{hop} + \sum_{i} (H_{i,U} + H_{i,SOC})$

1

d⁴: 2 sites Exact diagonalization

$$^{(6\times2)}C_8 \approx 500$$

states

O. Nganba Meetei, W. Cole, M. Randeria, NT, PRB 91, 054412 (2015)

Magnetic ground states persist even with one blocked channel

Hopping induced magnetism

Stoner Ferromagnet (SrRuO₃) Mean field theory

Novel FM

(1) Hopping generates a local mom(2) Local moment is not robust

U/t=8
$$|L_i| = 1$$

 $|S_i| = 1$
2.5
1.5
1
0.5
0
0
0
0
0.1
0.2
0.3
 λ/t

(3) Local moments are coupled ferromagnetically

Why *ferromagnetic* superexchange?

 $\frac{\text{Perturbation Theory}}{\text{H}_{o} = \sum \mathcal{H}_{i}^{at}}$ $\mathcal{H}_{i}^{at} = \frac{u - 3J_{H}}{2} \hat{N}_{i} (\hat{N}_{i} - 1) + \frac{5}{2} J_{H} \hat{N}_{i} - 2J_{H} \hat{S}_{i}^{2} - \frac{1}{2} J_{H} \hat{L}_{i}^{2}$ $\text{Ground State: } \hat{N}_{i} = 4 \quad \hat{L}_{i} = 1 \quad \hat{S}_{i} = 1$ $E_{o} = 12u - 26 J_{H}$ $\mathcal{H}_{hop} = -t \sum_{\alpha_{i}\sigma} C_{i\alpha\sigma}^{\dagger} C_{2\alpha\sigma}^{\dagger} + h.c.$

$$\Rightarrow \Delta E = E_1 - E_0 = u = 30$$

$$\overline{J}_{FM} = -\frac{t^2}{u - 3J_H}$$

 $J_F = J_{AF}$

when

J_H ~ 0.15 estimate

Role of Hund's coupling in determining magnetic ground state

- Hopping with one blocked channel
- Exact diagonalization results

 $\begin{array}{cccc} {\rm d}^4 - {\rm d}^4 & {\rm virtual} \; {\rm d}^3 - {\rm d}^5 \\ L_i = 1 & L_i = 1 & L_i = 0 & L_i = 1 \\ S_i = 1 & S_i = 1 & S_i = 3/2 & S_i = 1/2 \end{array}$

$$\tilde{H'} = H_{hop} \left[\sum_{n} \frac{|\psi_n\rangle \langle \psi_n|}{E_G - E_n} \right] H_{hop}$$

$$\tilde{H} \approx -J_{FM} \mathbf{S_1} \cdot \mathbf{S_2} \mathcal{P}(\mathbf{L_1} + \mathbf{L_2} = 1)$$

Orbitally entangled Ferromagnet S=2 antialigned with L=1

Effective Hamiltonian: Superexchange + SOC

$$H_{eff} = -J_{FM} \sum_{\langle ij \rangle} S_i S_j \mathcal{P}(L_i + L_j = 1) + \lambda \sum_i L_i S_i$$

FM superexchange $S_1 + S_2 = 2$ and $L_1 + L_2 = 1$

SOC

$$L_1 + S_1 = 0$$

and
 $L_2 + S_2 = 0$

Competition drives a phase transition

 $\Delta U_{eff} \sim t$

Mean-field theory for effective Hamiltonian

Locally L=1 + S=1 \rightarrow J=0, 1 and 2 (Ignore high energy J=2)

Sachdev, Bhatt PRB 41, 9323 (1989)

Mean-field theory for effective Hamiltonian

- Singlet condensate
- Gapped triplet band

- Triplet gap closes
- Triplet condensate forms

See also G. Khaliullin PRL 111, 197201 (2013)

Resonant X-ray Scattering

Free ion approximation (usually good for Mott insulators)

e (e') polarization of incoming (outgoing) photon

J. Fink, E. Schierle, E. Weschke, and J. Geck, Rep. Prog. Phys. 76, 056502 (2013)

 $\Delta f(\omega) \propto \sum_{n} \frac{\langle \Psi_G | (\mathbf{e}' \cdot \mathbf{D})^{\dagger} | \psi_n \rangle \langle \psi_n | \mathbf{e} \cdot \mathbf{D} | \Psi_G \rangle}{E_n - E_G - \hbar \omega - i\Gamma}$

When effect of neighboring sites are strong

$$\Delta f(\omega) \propto Tr \left[\rho \sum_{n} \frac{(\mathbf{e}'.\mathbf{D})^{\dagger} |\psi_{n}\rangle \langle \psi_{n} | \mathbf{e}.\mathbf{D}}{E_{n} - E_{G} - \hbar\omega - i\Gamma} \right]$$

$$\vec{e} \cdot \vec{D} \approx \vec{e} \cdot \hat{\vec{r}} = \sum_{\alpha\beta\sigma} \vec{e} \cdot \langle d_{\alpha} | \hat{\vec{r}} | p_{\beta} \rangle d_{\alpha\sigma}^{\dagger} p_{\beta\sigma} + \text{H.c.}$$

Resonant Xray scattering in d4

Conclusions: 4d/5d oxides

materials with 4 electrons in d-shell can be magnetic → Going beyond Ir(4+)

New paradigm

for magnetism

- Single atom with d4 is non-magnetic
 Hopping of electrons between atoms

 generates the local moment
 - -- dictates the nature of ordering
 - For typical values of J_H/U~0.2 (a) Ferromagnetic Ordering S_{total} maximized; L_{total} projected to intermediate value

(b) Distortions $F \rightarrow AF$

(c) If $J_H/U < 0.1$ can get AF even without distortion

Distortion

Materials:

<u>TM ions (d4): Ru⁴⁺, Os⁴⁺, Ir⁵⁺</u>

<u>xtal structures:</u>

- pyrochlore: Y₂Os₂O₇
- double perovskite: Sr₂MIrO₆, La₂MRuO₆
- layered perovskite: Ca₂RuO₄
- honeycomb: A₂RuO₃

strongly insulating and magnetic

Ca₂RuO₄ Optics + LDA/U J. H. Jung, Z. Fang, J. P. He, Y. Kaneko, Y. Okimoto, Y. Tokura, PRL 91, 056403 (2003)

K-edge RIXS + XAS gives Ru λso~200 meV cf Ir λso~400 meV C. G. Fatuzzo, M. Dantz, S. Fatale, P. Olalde-Velasco, N. E. Shaik, B. Dalla Piazza, S. Toth, J. Pelliciari, R. Fittipaldi, A. Vecchione, N. Kikugawa, J. S. Brooks, H. M. Rønnow, M. Grioni, Ch. R[°]uegg, T. Schmitt, and J. Chang, PRB 91, 155104 **(2015)**

Sr ₂ MIrO ₆ [M=Mg, Ca, Sc, Ti, Ni, Fe, Zn, In, Y]	 XAS+XMCD M. A. Laguna-Marco, P. Kayser, J. A. Alonso, M. J. Mart´ınez-Lope, M. van Veenendaal, Y. Choi, and D. Haskel, PRB 91, 214433 (2015) G. Cao, T. F. Qi, L. Li, J. Terzic, S. J. Yuan, L. E. DeLong, G. Murthy, and R. K. Kaul, PRL 112, 056402 (2014);
La ₂ MRuO ₆	Zhiying Wang, JQ. Yan and collaborators

J.-Q. Yan and collaborators

A₂RuO₃

 $Y_{2}OS_{2}O_{7}$

J. C. Wang, J. Terzic, T. F. Qi, Feng Ye, S. J. Yuan, S. Aswartham, S. V. Streltsov, D. I. Khomskii, R. K. Kaul, and G. Cao, PRB 90, 161110(R) (2014)

Prediction: Novel orbitally entangled ferromagnetism in d4 materials

Next steps....Develop theory for
(1) Different d-O-d bond angles from different xtal structures
(2) Distortion; pressure tuning
(3) XMCD and XAS