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Training Dynamics

L{w} =
1

M

MX

↵

`({w}; {X↵}, {Y ↵})

Learning (training): minimise the Loss function from random initial condition

Stochastic Gradient Descent

Gradient Descent w(t+�t) = w(t)� ⌘rwL{w}

w(t+�t) = w(t)� ⌘
BX

↵

rw`({w}; {X↵}, {Y ↵})

Supervised	Learning:	DNN

The	input-output	function	of	DNN	is	highly	non-linear	and	hierarchical

Let’s start by correctly classifying the Train set

distance between output and correct answer, i.e.

Loss function

l({w}; {X↵}, {Y ↵}) = (Y ↵ � f({w}; {X↵}))2



How good is Training?

Why and how does training succeed?

Learning is strikingly good! …but why?

What is the shape of the Loss landscape?

Many answers are hidden in the rough landscape of Loss function, but very complex!

Choromanska et al. 2015, Baldassi et al. 2016, Soudry Charmon 2016, Freeman Bruna 2017, Soudry Hoffer 2018

good minima, 
fat minima, 
rare minima, 
are there minima?
role of saddles

Dauphin et al. 2014, Sagun et al. 2014, Lee et al. 2016, Jastrzebski et al. 2017



The glass-formers paradigm

Same challenge met in physics of glass-formers

~ 50 years of research

⌧(T ) ⇠ exp(�(T )/T )

�(T ) " T #

Goldstein 1968



Supervised	Learning:	DNN

The	input-output	function	of	DNN	is	highly	non-linear	and	hierarchical

Parameters ~ 10^8 Real systems 10^23 particles

Numerical simulations 10^3 particles

H =
X

(i,j)

V (|ri � rj |)L{w} =
1

M

MX

↵

`({w}; {X↵}, {Y ↵})

From ML to models of glasses



From training to glass dynamics

w(t+�t) = w(t)� ⌘rwL{w}

ṙ↵,i(t) = �r↵,iH + ⌘↵,i(t)

w(t+�t) = w(t)� ⌘
BX
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Quenches : rapid coolings from high temperature, 
i.e. almost random initial configuration

Every particle moves to minimise 
the Energy + thermal noise  
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The correlation functions in aging show again the two-step relaxation phenomenon.
Similarly to the equilibrium case, the short-time dynamics is rather insensitive to the time tw
elapsed from the crunch. In contrast, the long-time relaxation shows a significant dependence
on tw. The longer tw, the longer the time required to lose the memory of the initial configuration.
As shown in the bottom panel of figure 3 the shape of the correlation function in equilibrium
conditions differs from that under OOE conditions. While the long-time decay of the
equilibrium correlation function can be well described by a stretched exponential, the shape of
the same function during aging is much wider than the equilibrium one and is better described
by a logarithmic decay. A similar observation holds for the OOE condition generated via a
T -jump [35].

Another interesting quantity is the behaviour of the mean square displacement ⟨r2⟩ as a
function of temperature and of aging time. The behaviour of ⟨r2⟩ during aging has been studied
previously for short tw and different potentials in references [36,37]. Figure 4 shows the mean
square displacements for the A particles.
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Figure 4. Mean square displacements in equilibrium for different values of T (left column) and
in aging for different waiting times (right column). Both linear–linear and log–log representations
are reported, to highlight the different t-dependences. Time is measured in MD steps.

In equilibrium, in the T -region where a clear separation of short-time and long-time
dynamics is feasible, all curves can be scaled onto a common master curve, the so-called time–
temperature representation. A master curve is produced if data are represented as a function
of log(t/τ (T )), as shown in the left-hand panel of figure 5. In the OOE conditions a similar

tw

Sciortino 2005
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Supervised	Learning:	DNN

The	input-output	function	of	DNN	is	highly	non-linear	and	hierarchical

Comparing Dynamics

Toy model: 1 hidden layer, ReLU, sigmoid in output, MSE as a loss

Fully connected: 3 hidden layers, ReLU, log likelihood 

Small Net: 2 hidden convolutional layers, 
                   2 fully connected ReLU, log likelihood

ResNet18: 18 hidden convolutional layers

MNIST, CFAR-10, CFAR-100

MBJ, LS, MG, SS, GBA, CC, YLC, MW, GB (2018)
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Aging during Learning
MBJ, LS, MG, SS, GBA, CC, YLC, MW, GB (2018)Comparing Dynamics: Deep Neural Networks versus Glassy Systems
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(a) Toy Model on CIFAR-10 m = 10

4, B = 100, ↵ = 0.1.

 0

 0.5

 1

 1.5

 2

 2.5

10
0

10
1 t1  10

2
10

3
10

4 t2 10
5

10
6
 0

 0.25

 0.5

 0.75

 1

L
o

ss

A
cc

u
ra

cy

t [steps]

Train Loss
Test Loss

Train Accuracy
Test Accuracy

(b) Fully Connected on MNIST, B = 128, ↵ = 0.01.
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(c) Small Net on CIFAR-10, B = 100, ↵ = 0.01.
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(d) ResNet-18 on CIFAR-100, B = 64, ↵ = 0.01.

Figure 2. Train/test loss and accuracy as a function of log(t). The batch size B and learning rate ↵ are specified under each plot. Note
that in 2(a) it is more difficult to pin-point the values of t1 and t2 since the crossover is not as sharp as in the other cases.

loss reaches asymptotically (i.e. after t2) its lowest possible
value. This is not the case in the p-spin model in which
instead the energy converges asymptotically to one of the
highest and widest minima (Cugliandolo & Kurchan, 1993;
Castellani & Cavagna, 2005). Actually, a p-spin model
with a number of degrees of freedom comparable to the
number M of weights that are used in deep learning (in our
examples M = 10

4 � 10

7) would take an exponentially
long time to go beyond the highest and widest minima and
reach the bottom of the landscape (Castellani & Cavagna,
2005; Berthier & Biroli, 2011). This is a first indication
that the dynamics involved in the training of deep neural
networks, although slow, does not correspond to the crossing
of large barriers, which would instead lead to much longer
time-scales.

In summary, the reason for the slowing down of the dynam-

ically.

ics during training is apparently not due to barrier crossing
but instead likely related to an increasingly large amount of
flat directions that become available to the system during its
descent in the loss landscape, as found numerically in (Le-
Cun et al., 1998; Sagun et al., 2017). This is actually similar
in the p-spin spherical model to the first dynamical regime
of aging dynamics that follows a quench. However, in this
case the system does not reach the lowest possible values of
the loss, as it happens to loss functions during training, but
remains trapped in higher and wide local minima.

3.2. Further evidence: Two-time correlation functions

In this section, we focus on the two-time mean-square dis-
placement �(tw, tw + t) of the weights and we compare it
to the one found for disordered systems after a quench. Its



Flat bottom of the Loss landscape

Comparing Dynamics: Deep Neural Networks versus Glassy Systems

definition reads:

�(tw, tw + t) =
1

M

MX

i=1

(wi(tw)� wi(tw + t))2 (3)

where the sum runs over all the weights wi of the network,
and M is their total number.

The three regimes of the learning dynamics described in
Sec. 3.1 are visible also through the behavior of the mean-
square displacement. In Figure 3, for tw < t1, �(tw, tw+t)
collapses on a single curve. Once t1 < tw < t2 the mean-
square displacement develops a clear dependence on tw: the
characteristic time increases with tw, thus showing aging,
and when t > t2 � tw it suddenly becomes flat. In the third
regime, which corresponds to tw > t2, the characteristic
time does not increase any longer with tw.
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Figure 3. Two-time mean square displacement, �(tw, tw + t), de-
fined in Equation 3, for model C (Small Net). Every curve corre-
sponds to a different waiting time tw, indicated in the legend.

To a large extent, the training dynamics at large times can
be explained in terms of diffusion in the weight space. A
hallmark of a diffusing system is a motion purely driven by
the noise D (Crank, 1979). We estimate the noise in SGD
with the variance of the loss function’s gradient8, which
reads (details on the definition of the noise can be found in
several resources, see, for example, Li et al. (2015)):

D =

1

|train set|
X

s2train set

1

M
|rLs �rL|2 (4)

where L =

1
|train set|

P
s2train set Ls is the empirical average

and Ls is the loss of the s-th image in the train set. In
a glassy system, the noise is constant through time if the
temperature is fixed, whereas during the training D varies,
being a function of the network’s weights. When comparing

8For reasons of numerical efficiency, for some models D is
calculated on a (sufficiently large) subset of the training set.

the results obtained at different tw we then normalize the
mean-square displacement by D(tw), since larger D(tw)
leads naturally to larger �(tw, tw + t), as illustrated by
simple diffusion processes9.

We present the mean square displacements in Fig-
ures 4(a), 4(b), 4(c), 4(d)10. The main result that we find
is that for tw < t2 there is a clear tw dependence, whereas
at larger times the curves for different tw collapse together
when scaled with D(tw). To stress this fact each of the plots
has been split in two panels: the upper one shows the curves
with tw < t2 and the lower one those with tw > t2 11. The
collapse indicates that, except for the change in the strength
of the noise D, the dynamics is reaching a stationary regime
for tw > t2. In this regime, the loss function is almost equal
to zero, thus indicating that the system is diffusing close to
the bottom of the landscape.12

Let us now compare this situations with the one of physical
systems after a quench, in particular the p-spin spherical
model for p = 3. In both cases one finds somewhat similar
regimes characterized by aging, and corresponding to the
descent in the loss (or energy) landscape. The behavior at
large times is instead different. In the training dynamics
aging is interrupted, meaning that the system becomes sta-
tionary except for the change in the noise strength, whereas
for the p-spin model aging persists even when the energy
approaches its asymptotic value (on time-scales that do not
diverge with the system size). Another difference is the
shape of the mean-square displacement curves. During ag-
ing, in Figure 1(b), the curves follow a master curve for
small t no matter what is the value of tw, instead for DNNs
no collapse at short-times is present. For tw > t2 the shape
of the mean-square displacements does not show any in-

9The normalization by D(tw) is just an approximate way to
take into account the variation of the noise with time; it works well
if the variation is not too fast compared to t.

10For model B and D we averaged over eight and two random
initializations, respectively. This is done to iron out the fluctuations
of the mean-square displacement. In principle, in order to see
the collapse, this procedure should have been carried out for all
experiments, but it was not required for models A and C.

11Except Fig. 4(d), where we could not reach long-enough times,
and a hybrid regime is represented.

12Notes on further experiments: (1) LeNet on CIFAR10 with
77% test accuracy presents collapse curves at least as good as
Figure 4(c), and (2) Deeper ResNet & WideResNet models on
both CIFAR10 and CIFAR100 with better accuracies than model D
give the correct diffusive slope in their mean square displacement
curves but the collapse is not as good as in Figure 4(d). We believe
that the key to resolve the collapse in models where number of
parameters are much larger goes through a better calculation of
the noise coefficient. As a matter of fact, D changes with time, so
rescaling �(tw, tw + t) by D(tw) can only work well for small t.
This also explains why in Fig. 4 the expected slope �/D ⇠ t is
only identified for not too large t. We will analyze these issues in
detail in an upcoming work.

Learning as Interrupted Aging and Diffusion
MBJ, LS, MG, SS, GBA, CC, YLC, MW, GB (2018)
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The three regimes of the learning dynamics described in
Sec. 3.1 are visible also through the behavior of the mean-
square displacement. In Figure 3, for tw < t1, �(tw, tw+t)
collapses on a single curve. Once t1 < tw < t2 the mean-
square displacement develops a clear dependence on tw: the
characteristic time increases with tw, thus showing aging,
and when t > t2 � tw it suddenly becomes flat. In the third
regime, which corresponds to tw > t2, the characteristic
time does not increase any longer with tw.

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

tw + t = t2

�
 (

t w
, 
t w

 +
 t

)

t [steps]

    tw:
0
1
2
3
4
5
7
9

11
15
19
25
33
42
56
73
95

124
162
212
277
362
473
618

808
1057
1381
1805
2360
3084
4032
5270
6888
9003

11768
15381
20105
26279
34349
44897
58685
76706

100262
131052
171296
223900
292657
382529
500000

Figure 3. Two-time mean square displacement, �(tw, tw + t), de-
fined in Equation 3, for model C (Small Net). Every curve corre-
sponds to a different waiting time tw, indicated in the legend.

To a large extent, the training dynamics at large times can
be explained in terms of diffusion in the weight space. A
hallmark of a diffusing system is a motion purely driven by
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being a function of the network’s weights. When comparing
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the results obtained at different tw we then normalize the
mean-square displacement by D(tw), since larger D(tw)
leads naturally to larger �(tw, tw + t), as illustrated by
simple diffusion processes9.

We present the mean square displacements in Fig-
ures 4(a), 4(b), 4(c), 4(d)10. The main result that we find
is that for tw < t2 there is a clear tw dependence, whereas
at larger times the curves for different tw collapse together
when scaled with D(tw). To stress this fact each of the plots
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collapse indicates that, except for the change in the strength
of the noise D, the dynamics is reaching a stationary regime
for tw > t2. In this regime, the loss function is almost equal
to zero, thus indicating that the system is diffusing close to
the bottom of the landscape.12

Let us now compare this situations with the one of physical
systems after a quench, in particular the p-spin spherical
model for p = 3. In both cases one finds somewhat similar
regimes characterized by aging, and corresponding to the
descent in the loss (or energy) landscape. The behavior at
large times is instead different. In the training dynamics
aging is interrupted, meaning that the system becomes sta-
tionary except for the change in the noise strength, whereas
for the p-spin model aging persists even when the energy
approaches its asymptotic value (on time-scales that do not
diverge with the system size). Another difference is the
shape of the mean-square displacement curves. During ag-
ing, in Figure 1(b), the curves follow a master curve for
small t no matter what is the value of tw, instead for DNNs
no collapse at short-times is present. For tw > t2 the shape
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if the variation is not too fast compared to t.

10For model B and D we averaged over eight and two random
initializations, respectively. This is done to iron out the fluctuations
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the collapse, this procedure should have been carried out for all
experiments, but it was not required for models A and C.

11Except Fig. 4(d), where we could not reach long-enough times,
and a hybrid regime is represented.

12Notes on further experiments: (1) LeNet on CIFAR10 with
77% test accuracy presents collapse curves at least as good as
Figure 4(c), and (2) Deeper ResNet & WideResNet models on
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the noise coefficient. As a matter of fact, D changes with time, so
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Learning as Interrupted Aging and Diffusion
MBJ, LS, MG, SS, GBA, CC, YLC, MW, GB (2018)
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(a) Toy Model on CIFAR-10, B = 100, ↵ = 0.1.
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(b) Fully Connected on MNIST, B = 128, ↵ = 0.01.
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(c) Small Net on CIFAR-10, B = 100, ↵ = 0.01.
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(d) ResNet-18 on CIFAR-100. B = 64, ↵ = 0.01.

Figure 4. Mean square displacements rescaled by the noise on the loss’s gradient. Since the behavior of the curves differ in different
phases, we show the smaller tw < t2 on the top set, and the larger tw > t2 on the lower set. For reference, some tw appear in both sets.
The black segment on the bottom sets represents a slope ⇠ t.

termediate plateau13, contrary to what found in Fig. 1(b).
The form of �(tw, tw + t) is instead the one characteristic
of diffusion (the curves �/D would be straight lines in a
log-log plot only if D didn’t depend on tw).

Both the aging and the diffusive regimes are present and
qualitatively similar in all the analyzed networks. The
fact that a slow aging dynamics is also present in model
A (Toy Model), that supposedly has no barriers (see Sec. 3),
strengthens the conclusion that the dynamics slows down
because of the emergence of flat directions that ultimately
lead to diffusion at or close to the bottom of the landscape.
A deeper analysis of the finer properties of the diffusive
regime will be studied in a forthcoming publication.

13The shape of the mean-square displacements is different for
different networks, possibly indicating that the manifolds corre-
sponding to the bottom of the landscape have different geometric
characterization.

4. Discussion
In this work we have analyzed the training dynamics
of DNNs by methods developed in physics for out-of-
equilibrium disordered systems. We have studied the time
dependence of the loss value and the mean-square displace-
ments of the weights and compared them to their counter-
parts in physical systems, in particular the 3-spin spherical
spin-glass. The analysis of the time-dependence of the loss
function and the mean square displacement indicates that
there are at least three time regimes in the training process:
one corresponding to an initial exploration of the energy/loss
landscape, followed by a decrease of the loss, in which the
system displays aging dynamics, and a final regime in which
the dynamics appears to be almost stationary and diffusive.
Barrier crossing does not seem to play any role. The slowing
down can be instead traced back to an increasingly large
amount of flat directions that become available to the system

Learning as Interrupted Aging and Diffusion
MBJ, LS, MG, SS, GBA, CC, YLC, MW, GB (2018)

�(tw, tw + t) =
1

N

X

i

(wi(tw)� wi(tw + t))2 D =
1

|train set|
X

↵2train set

|rL↵ �rLemp|2



Uninterrupted Aging in under-parametrised NN

Toy model: 1 hidden layer (MUCH SMALLER), ReLU, sigmoid in output, MSE as a loss
Comparing Dynamics: Deep Neural Networks versus Glassy Systems
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(b) Mean square displacement of the under-parametrized model.

Figure 5. On 5(a) train/test loss and accuracy as a function of log(t) in a modified version of model A (Toy Model) with only 10 hidden
neurons on CIFAR-10. The batch size is B = 100, and the learning rate is ↵ = 0.1. On 5(b), mean square displacement for the same
model.

during its descent in the loss landscape.

The non-existence of such barrier crossings has been already
proposed in the machine learning literature and some indi-
rect evidences where obtained in numerical works. In (Free-
man & Bruna, 2016), it is shown that in certain networks
one can connect two different solutions by a path in the
weight space in such a way that the loss doesn’t increase
by much, and the amount of increase diminishes as the size
of the network grows. In a related perspective on the loss
surface, (Sagun et al., 2016) and (Sagun et al., 2017) demon-
strate separate cases where the straight line between two
weight configurations at the bottom of the loss landscape
evaluates to the same loss value, in other words there are no
barriers between these two points.

Overall, our study shows that there are interesting analo-
gies between DNNs and glassy mean-field models but also
important differences: in both cases slow evolution along
almost flat directions is a key ingredient to understand the
dynamics, however in DNNs the shape of �(tw, tw + t) at
large tw combined with the fact that the system is able to
reach the bottom of the landscape suggests that the statisti-
cal properties of the loss landscape are not the same even
qualitatively. A possible reason for this difference is the
over-parametrization of DNNs, which, pictorially, stretches
the rough landscape and makes its dynamical exploration
easier. Indeed, the dynamics of glassy systems was recently
shown to be greatly accelerated by adding continuous pa-
rameters (Ninarello et al., 2017). As explained in (Brito
et al., 2018) this flattens the landscape and allows to reach
very low energy states without jumping over barriers.

In order to test this idea, we have reduced substantially the
number of nodes for model A keeping the same dataset used

for the previous figures. In this case the loss function does
not reach zero, actually it seems to tend asymptotically to
a higher value, see Figure 5(a). Even more striking is the
behavior of the mean-square displacement, which is now
qualitatively similar to those of glassy systems, as shown in
Figure 5(a). One sees both a collapse at small values of t for
different values of tw, possibly indicating the emergence of
an Edwards-Anderson parameter and trapping in bad local
minima, and a later tw-dependent time increase just like in
regular aging of disordered systems.

On the basis of these results, we conjecture the existence of
a phase transition between two regimes: (i) an easy phase
corresponding to over-parametrized networks, in which bad
local minima do not play any role, dynamics is governed by
a massive amount of flat directions, and learning is achieved;
(ii) a hard phase corresponding to under-parametrized net-
works, in which the landscape is rough, dynamics is glassy
and the network does not learn well. Whether learning is
possible in this case but it would take a huge amount of time
to find the good minima is an interesting question.

This scenario has tantalizing similarities with the one found
in several combinatorial optimization problems in which
easy, hard and impossible algorithmic phases have been
found, see e.g. (Monasson et al., 1999; Mézard et al.,
2002; Krzakała et al., 2007; Zdeborová & Krzakala, 2016;
Achlioptas & Coja-Oghlan, 2008). When degrees of free-
dom are continuous, the transition between these phases can
be associated with the emergence of many flat directions
in the energy landscape, a well-known example is the jam-
ming transition of disordered solids (Wyart, 2005; Liu et al.,
2010). A detailed investigation of this scenario for DNNs is
ongoing and will be presented in a future publication.

Aging on infinitely long timescales
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Figure 1: The `2-regularized cross-entropy train loss surface of a ResNet-164 on CIFAR-100, as a
function of network weights in a two-dimensional subspace. In each panel, the horizontal axis is
fixed and is attached to the optima of two independently trained networks. The vertical axis changes
between panels as we change planes (defined in the main text). Left: Three optima for independently
trained networks. Middle and Right: A quadratic Bezier curve, and a polygonal chain with one bend,
connecting the lower two optima on the left panel along a path of near-constant loss. Notice that in
each panel a direct linear path between each mode would incur high loss.

We believe that this geometric discovery has major implications for research into multilayer networks,
including (1) improving the efficiency, reliability, and accuracy of training, (2) creating better
ensembles, and (3) deriving more effective posterior approximation families in Bayesian deep
learning. Indeed, in this paper we are inspired by this geometric insight to propose a new ensembling
procedure that can efficiently discover multiple high-performing but diverse deep neural networks.

In particular, our contributions include:

• The discovery that the local optima for modern deep neural networks are connected by very
simple curves, such as a polygonal chain with only one bend.

• A new method that finds such paths between two local optima, such that the train loss and
test error remain low along these paths.

• Using the proposed method we demonstrate that such mode connectivity holds for a wide
range of modern deep neural networks, on key benchmarks such as CIFAR-100. We show
that these paths correspond to meaningfully different representations that can be efficiently
ensembled for increased accuracy.

• Inspired by these observations, we propose Fast Geometric Ensembling (FGE), which
outperforms the recent state-of-the-art Snapshot Ensembles [13], on CIFAR-10 and CIFAR-
100, using powerful deep neural networks such as VGG-16, Wide ResNet-28-10, and
ResNet-164. On ImageNet we achieve 0.56% top-1 error-rate improvement for a pretrained
ResNet-50 model by running FGE for only 5 epochs.

• We release the code for reproducing the results in this paper at
https://github.com/timgaripov/dnn-mode-connectivity

The rest of the paper is organized as follows. Section 2 discusses existing literature on DNN loss
geometry and ensembling techniques. Section 3 introduces the proposed method to find the curves
with low train loss and test error between local optima, which we investigate empirically in Section 4.
Section 5 then introduces our proposed ensembling technique, FGE, which we empirically compare
to the alternatives in Section 6. Finally, in Section 7 we discuss connections to other fields and
directions for future work.

Note that we interleave two sections where we make methodological proposals (Sections 3, 5), with
two sections where we perform experiments (Sections 4, 6). Our key methodological proposal for
ensembling, FGE, is in Section 5.

2 Related Work

Despite the success of deep learning across many application domains, the loss surfaces of deep
neural networks are not well understood. These loss surfaces are an active area of research, which
falls into two distinct categories.

The first category explores the local structure of minima found by SGD and its modifications.
Researchers typically distinguish sharp and wide local minima, which are respectively found by using
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trained networks. Middle and Right: A quadratic Bezier curve, and a polygonal chain with one bend,
connecting the lower two optima on the left panel along a path of near-constant loss. Notice that in
each panel a direct linear path between each mode would incur high loss.
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ensembles, and (3) deriving more effective posterior approximation families in Bayesian deep
learning. Indeed, in this paper we are inspired by this geometric insight to propose a new ensembling
procedure that can efficiently discover multiple high-performing but diverse deep neural networks.
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• The discovery that the local optima for modern deep neural networks are connected by very
simple curves, such as a polygonal chain with only one bend.

• A new method that finds such paths between two local optima, such that the train loss and
test error remain low along these paths.
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• Inspired by these observations, we propose Fast Geometric Ensembling (FGE), which
outperforms the recent state-of-the-art Snapshot Ensembles [13], on CIFAR-10 and CIFAR-
100, using powerful deep neural networks such as VGG-16, Wide ResNet-28-10, and
ResNet-164. On ImageNet we achieve 0.56% top-1 error-rate improvement for a pretrained
ResNet-50 model by running FGE for only 5 epochs.

• We release the code for reproducing the results in this paper at
https://github.com/timgaripov/dnn-mode-connectivity

The rest of the paper is organized as follows. Section 2 discusses existing literature on DNN loss
geometry and ensembling techniques. Section 3 introduces the proposed method to find the curves
with low train loss and test error between local optima, which we investigate empirically in Section 4.
Section 5 then introduces our proposed ensembling technique, FGE, which we empirically compare
to the alternatives in Section 6. Finally, in Section 7 we discuss connections to other fields and
directions for future work.

Note that we interleave two sections where we make methodological proposals (Sections 3, 5), with
two sections where we perform experiments (Sections 4, 6). Our key methodological proposal for
ensembling, FGE, is in Section 5.

2 Related Work

Despite the success of deep learning across many application domains, the loss surfaces of deep
neural networks are not well understood. These loss surfaces are an active area of research, which
falls into two distinct categories.

The first category explores the local structure of minima found by SGD and its modifications.
Researchers typically distinguish sharp and wide local minima, which are respectively found by using
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Study of the overparametrised/underparametrised transition

Is there a way to speed up learning in the under-parametrised regime?
Are there bad minima left even in over-parametrised? Why do we avoid them?

Conclusion, open questions

Draxler et al. 2018, Garipov et al. 2018, Sagun et al. 2018 

Spigler, Geiger et al. 2018; Geiger et al. 2019

Is underlying structure of data important?
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