Unraveling the mysteries of

stochastic gradient descent
for deep neural networks

Pratik Chaudhari




The gquestion
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Many, many variants:
AdaGrad, rmsprop, Adam,
SAG, SVRG, Catalyst,
APPA, Natasha, Katyusha...
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Stochastic gradient descent

Xk+1 = Xk — 1 Vi (xk)
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Why is SGD
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Empirical evidence: wide “minima”
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A bit of statistical physics

> Energy landscape of a binary perceptron

Many sharp minima

Few wide minima,
but generalize better
[Baldassi et al., '"15]

> Wide “minima” are a large deviations phenomenon
for this problem



Tilting the Gibbs measure

» Local Entropy [Chaudhari et al., ICLR '17]

x* = argmin f(x)
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top1 error (%)

Parle: parallelization of SGD

> State-of-the-art performance [Chaudhari et al., SysML '18]
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The question

Why is SGD

so special?




A continuous-time view of SGD

> Diffusion matrix: variance of mini-batch gradients

D(x)
6

var(Vf{;(x)) =
1 1 . T T
= - (N kZka(x) Vi (x)T = VF(x) VF(x) )

1

> Temperature: ratio of learning rate and step-size

B~



A continuous-time view of SGD

» Continuous-time limit of discrete-time updates

dx = —Vf(x)£L+\/2ﬁ‘1D(x) dW (t)

1 will assume x € Q c R?

> Fokker-Planck (FP) equation gives the distribution on the
weight space induced by SGD

Pt = diV(l’Z’/ + ,B_1diV(D P) ) where x(t) ~ p(t)
drift

-~

diffusion



Wasserstein gradient flow

> Heat equation p: = div(I Vp) performs steepest descent on the
Dirichlet energy

% f Vo(x)|* dx
Q

> |t is also the steepest descent in the Wasserstein metric for

] | W2(p. p%)

converges to trajectories
of the heat equation

> Negative entropy is a Lyapunov functional for Brownian motion

Pheat = argmin—H(p)
0
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Wasserstein gradient flow: with drift

» |f D=1, the Fokker-Planck equation
_di ~1
Pt = dlv(pr +B 1 Vp)
has the Jordan-Kinderleher-Otto (JKO) functional [Jordan et al., '97]

p>=(x) = arg;nin EEXNP[f(x)] — B H(pz

N
7 NV

-~

energetic term entropic term

as the Lyapunov functional.

» FP is the steepest descent on JKO in the Wasserstein metric
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What happens for non-isotropic noise?

pr = div(lfﬁ + B 'div(D p) )
drift

-~

diffusion

> FP monotonically minimizes the free energy

p>=(x) = arg;nin Ex-p [CD(X)] — B "H(p)

» Rewrite as
F(p) =B 'KL(p || p*)

compare with [x - x*| for deterministic optimization.
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SGD performs variational inference

Theorem [Chaudhari & Soatto, ICLR '18]

The functional
F(p) =B~'KL(p |l p*)

IS minimized monotonically by trajectories of the
Fokker-Planck equation

pe =div(Vfp + B~ 'div(D p))

with p~° as the steady-state distribution. Moreover,

® = -8 logp*™

up to a constant.

13



Some implications

> | earning rate should scale linearly with batch-size

B~'= —  should not be small

> Sampling with replacement regularizes better than without
o _ 6
:BW/O replacement ﬁ (1 — N)

also generalizes better.
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Information Bottleneck Principle

» Minimize mutual information of the representation with the training data
[Tishby et al. 99, Achille & Soatto '17]

1IBg(6) = Ex-p, [f(x)] —- B KL(pg | prior)

> Minimizing these functionals is hard, SGD does it naturally
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Potential Phi vs. original loss f

» The solution of the variational problem is

Zp
> Key point
1 Most likely locations of
pS(x) # —e P SGD are not the critical
Zﬁ points of the original loss

» The two losses are equal if and only if noise is isotropic

Dix)=1 & ®(x)="Ff(x)
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Deep networks have highly non-isotropic noise

frequency
S
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A(D) = 0.27 + 0.84 A(D) =0.98 +2.16
rank(D) = 0.34% rank(D) = 0.47%

» Evaluate neural architectures using the diffusion matrix
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Cause |: Real data is not independent
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Cause 2: Symmetries in deep architectures

» Deep networks have permutation as well as continuous symmetries,
e.g., from matrix factorization [Nouiehed & Razaviyayn '18],

X=APP'B

» Over-parametrized two layer neural networks have non-isolated
global minima, no local minima [Venturi et al., ’18]

» XY-models

1 1
—H(o) = 5 Z cos(o; — 0;) P

(i,j) € neighbors iNi 13
J g [Nerattini et al., ’13]
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Most likely trajectories of SGD

Theorem [Chaudhari & Soatto, ICLR '18]

The most likely trajectories of SGD are
x = j(x),
where the "leftover” vector field
j(x) = =VFf(x) + D(x) V& (x) = B~ divD(x)

IS such that
div j(x) = 0.
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Most likely trajectories of SGD

» Run SGD for 10° epochs

FFT of x, ., — x|
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Most likely locations are not the critical points of the original loss

Theorem [Chaudhari & Soatto, ICLR '18]

The Ito SDE

dx = —Vf dt +[28-1D dW/(t)

IS equivalent to an A-type SDE

dx =—(D+ Q) Vo dt + \/2,3—10 dw(t)
with the same steady-state p** oc e PP(X) if

VF=(D+Q)Vo-p"div(D+Q).
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Knots in our understanding
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1. Stochastic gradient descent performs variational inference,
converges to limit cycles for deep networks.
Pratik Chaudhari and Stefano Soatto. [ICLR ’18]

2. Entropy-SGD: biasing SGD towards wide regions
Pratik Chaudhari et al., [ICLR ’17]

3. Parle: parallel training of deep networks
Pratik Chaudhari et al., [SysML ‘18]

www.pratikac.info

Thank you, questions?
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