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Supervised learning

Training: Find a functionf(.) € & that predicts the right class y;, = f(X;) in the dataset

The fraction of mistakes is called the training error
Cats (0) Dogs (1)

Sample of cats & dogs images from Kaggle Dataset
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Supervised learning

Training: Find a functionf(.) € & that predicts the right class y;, = f(X;) in the dataset

The fraction of mistakes is called the training error

Cats (0)

Sample of cats & dogs images from Kaggle Dataset

Generalization: See how the function performs on new, unseen, images

9 The fraction of mistakes on new images
f (Xnew) - Is called the generalisation error
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The generalization crisis

UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

Chiyuan Zhang* Samy Bengio Moritz Hardt
Massachusetts Institute of Technology Google Brain Google Brain
chiyuan@mit.edu bengio@google. com mrtz@google.com
Benjamin Recht' Oriol Vinyals
University of California, Berkeley Google DeepMind
brecht@berkeley.edu vinyals@google.com

ABSTRACT

Despite their massive size, successful deep artificial neural networks can exhibit a
remarkably small difference between training and test performance. Conventional
wisdom attributes small generalization error either to properties of the model fam-
ily, or to the regularization techniques used during training.

Through extensive systematic experiments, we show how these traditional ap-
proaches fail to explain why large neural networks generalize well in practice.
Specifically, our experiments establish that state-of-the-art convolutional networks
for image classification trained with stochastic gradient methods easily fit a ran-
dom labeling of the training data. This phenomenon is qualitatively unaffected
by explicit regularization, and occurs even if we replace the true images by com-
pletely unstructured random noise. We corroborate these experimental findings
with a theoretical construction showing that simple depth two neural networks al-
ready have perfect finite sample expressivity as soon as the number of parameters
exceeds the number of data points as it usually does in practice.

We interpret our experimental findings by comparison with traditional models.
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Abstract

Through extensr
proaches fail to C L . . = . . :
Specifically, our Generalization performance of classifiers in deep learning has recently become a subject

for image classif of intense study. Deep models, which are typically heavily over-parametrized, tend to fit the

dom labeling of training data exactly. Despite this “overfitting", they perform well on test data, a phenomenon

by explicit regul: .
plyetels unstructu not yet fully understood.

with a theoretical The first point of our paper is that strong performance of overfitted classifiers is not a
ready have perfex unique feature of deep learning. Using six real-world and two synthetic datasets, we estab-
exceeds the numl . . . . co L
lish experimentally that kernel machines trained to have zero classification error or near zero
regression error (interpolation) perform very well on test data, even when the labels are cor-
rupted with a high level of noise. We proceed to give a lower bound on the norm of zero
loss solutions for smooth kernels, showing that they increase nearly exponentially with data
d17ze We noint out that thic 1< difficult to reconcile with the exictino ceneralization bounnds

We interpret our
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Rethinking generalization requires revisiting old ideas: statistical
mechanics approaches and complex learning behavior
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Abstract

We describe an approach to understand the peculiar and counterintuitive generalization prop- 15 not a
erties of deep neural networks. The approach involves going beyond worst-case theoretical ‘e estab-
capacity control frameworks that have been popular in machine learning in recent years to Cal ZC1o
revisit old ideas in the statistical mechanics of neural networks. Within this approach, we are; cor-
present a prototypical Very Simple Deep Learning (VSDL) model, whose behavior is con- of zero
trolled by two control parameters, one describing an effective amount of data, or load, on the /ith data
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Rademacher and VC bounds

Given a space Z and a fixed distribution D|z, let S = {z1,...,2z,} be a set of examples drawn
i.i.d. from D|z. Furthermore, let F be a class of functions f: Z — R.

Definition. The empirical Rademacher complexity of F is defined to be

R 1 m
R, (F) = E; |sup | — o; f(z
(F) [feg (,m; f( ))]

where o1, ...,0,, are independent random variables uniformly chosen from {—1,1}. We will refer
to such random variables as Rademacher variables.

Definition. The Rademacher complexity of F is defined as

Rm(f) = ED[Rm(]:)]
Theorem 2. Fix distribution D|; and parameter 6 € (0,1). If F C {f : Z — [a,a + 1]} and

S =A{z1,...,2z,} is drawn i.i.d. from D|z then with probability > 1 — § over the draw of S, for
every function f € F,

In(1/6)

m

Eplf(2)] < Es[f(2)] + 2R (F) + (1)

In addition, with probability > 1 — 0, for every function f € F,

Eplf(2)] < Eslf(2)] + 28m(F) + 3/ L0 )

By Sauer’s Lemma, H[m]| < m< where d is the VC dimension of H, so we can further simplify this
result to

" 2d1 ,
Ron(H) < iy

= m

Credit: Machine Learning Theory, lecture notes @CMU
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A back-of-the-envelope bound

(X, yi)}i=1,...,n
A()eF

A

€genemlization = €training

What is the worst that can happen ?

We are looking for a rule while there_is no rule and the labels are actually random!

1
random .. random _
€training can be optimised... ... but €generalization — )
So, in reality, we expect:
€ L — . ¢ random _ grandom _ l(l _ 2€random) _ lg"g [(x))
generalization training — “generalization training o) training’ T

| %n({x}»).is‘the empirical Rademacher complexity:
It tells how well your method can fit random labels

(-

1 .

o S 59?”{ (X) } is a very pessimistic scenario!

€oeneralization — €trainin



Physicists like Models

YOORE TRYING TO PREDICT THE BEHAVIOR
OF ? JUST MOPEL

ITAS A - AND THEN ADD
SOME. SECONDARY TERMS To ACCOUNT R

\

EASY, RGHT?
)
50, WHY DOES NEED
A WHOLE JoURNAL, ANYWAY?

Spherical cow in vacuum

LIBERAL-ARTS MAJORS MAY BE ANNOYING SOMETIMES,
BUT THERES NOTH/ING MORE OBNOXIOUS THAN
R PHYSICIST FIRST ENCOUNTERING A NEW SUBJECT.

credit: XKCD

Physicists do not like worst case analysis, and instead study models of data







The Teacher-Student scenario

P. Carnevali & S. Patarnello (1987)
N. Tishby, E. Levin, & S. Solla (1989)
E. Gardner, B. Derrida (1989)
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A tale of two networks
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A tale of two networks

p features

The Teacher-Student scenario
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A tale of two networks

The Teacher-Student scenario
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Statistical Physics Setting

Hamiltonian == Cost function Ex: Binary classification
Ground state energy == minimal error

N
H=N—-) 6 3=
=1

S yif(yi))
N — Z :
i



Statistical Physics Setting

Hamiltonian == Cost function Ex: Binary classification
Ground state energy == minimal error

N
H=N-) 5 )=
=1

ﬁ +y, (X))

Average over disorder == Average on data generated by the teacher

Spin-glass like model in statistical mechanics of disordered systems

F = — pt,,.,log Z(data)



A BIT OF HISTORY

» Very active part of statistical physics in the 90s. An entire section of
arxiv.org/cond-mat is devoted to Disordered Systems and Neural Networks.
Hundreds of papers following these studies.

» Review articles and book:

e Seung, Sompolinsky, Tishby. Statistical mechanics of learning from
examples, Phys. Rev. A, 1992.

o Watkin, Rau, Biehl. The statistical mechanics of learning a rule,
Reviews of Modern Physics, 1993.

e Engel, Van den Broeck. Statistical Mechanics of Learning,
Cambridge University Press, 2001.

» Many questions left open, need to re-think many results (next slide).

» After 2000, not much activity on *artificial* neural networks among statistical
physics community.

» Massive come-back in recent years as Deep Learning made his impact



http://arxiv.org

(SOME) OPEN QUESTIONS

® Can one compute the worst-case Rademacher bound?
e Can one compute the optimal generalisation rigorously ?
® How does these two compare?

o Can optimal results be obtained by a tractable (i.e. polynomial)
algorithms?

® How good is Stochastic Gradient Descent in this case?




(SOME) OPEN QUESTIONS

® Can one compute the worst-case Rademacher bound?
e Can one compute the optimal generalisation rigorously ?
® How does these two compare?

o Can optimal results be obtained by a tractable (i.e. polynomial)
algorithms?

® How good is Stochastic Gradient Descent in this case?

| All answered in this talk. §







Generalisation in single &
multi-Layer teacher-student networks



Single Layer Neural Nets

Teacher is a SLNT, Student is a SLNT

y — Cﬂg(Z) — Cﬂg(x ) W) Pout(y‘z) — EPg [5(y T pr(z)]



RESULT 1: BAYES OPTIMAL RESULT

Barbier, FK, Macris, Miolane, Zdeborova arXiv:1708.03395, COLT’18

1L
Def. “quenched” free entropy: f = lim -E, rlog Z(y, F')

P—> OO p

Theorem 1 (replica free entropy, informally):
f =supinf frs(m,m)

¢PX (m) —|_ Oé@Pout (m7 IO)

A

mm
2

> [em:vxo—l—m:cz—me/Z} ]

s b

®p,,. (m;p) = E, [/dyPout(yI\/_v+\/ mz)InE, | out(y\\/ﬁwr\/p—mw)ﬂ
e B z,v,w ~ N(0,1) p=Ep (%)
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Def. “quenched’ free entropy:f — Im - E, »logZ{y, )

P—> OO p

Theorem 1 (replica free entropy, informally):

f =supinf frs(m,m)

A

mim
2
Theorem 2 (informally): Optimal generalisation error is
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where m* is the extremizer of frs.

= ®py () + a®p,, (M; p)
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Def. “quenched’ free entropy:f — Im - E, »logZ{y, )

P—> OO p

Theorem 1 (replica free entropy, informally):

f =supinf frs(m,m)
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mim
2
Theorem 2 (informally): Optimal generalisation error is

E, [%(\/ﬁ v)2] | [[EW, ; [%(W v++/p—m w)] 2]

where m* is the extremizer of frs.

= ®py () + a®p,, (M; p)

Generalization and rigorous proof of early results by
‘Derrida, Gardner '89, Gyorgyi ’90 & Sompolinsky, Tishby, Seung ‘92




RESULT 2: RADEMACHER COMPLEXITY

Aubin, FK, Zdeborova, in preparation

Rademacher complexity can be obtained with the replica method

Groundstate energy with random labels:

e = lim B labell log ([dee—ﬂ%’ > from replica method (1RSB level)
P

n,p— oo

: < K >r_
A rand eGS = lim [Erandom label -
egs = — 0gf (T, ) o

Groundstate energy gives the Rademacher Complexity

2eqq()
a
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Groundstate energy with random labels:
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egs = — 0gf (T, ) o

Groundstate energy gives the Rademacher Complexity
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Generalization of early results by
Derrida and Gardner ’89 & Mezard, Krauth ‘89
. Mqthemtically open
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Typical vs Worst case

Spherical Perceptron WeR:,||W|E=1

Gardner Capacity a=2 Cover (1965), Derrida-Gardner, 1988, 1989

10
Rademacher Complexity

0.8 - (from the replica method)

0.6 -

0.4 -

Bayes-optimal
0.2 - Mean-Squared-Error
0.0 -
0 2 B b 8 10



Typical vs Worst case

Spherical Perceptron WeR:,||W|E=1

Gardner Capacity a=2

10° |

Rademacher Complexity
(from the replica method)
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Typical vs Worst case
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Typical vs Worst case

Binary Perceptron

Gardner Capacity a=0.8333 Mezard-Krauth "89
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Typical vs Worst case

Binary Perceptron W.==x1

Gardner Capacity a=0.8333 Mezard-Krauth "89
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Perfect generalisation a=1.24... o =



Typical vs Worst case

Binary Perceptron W.==x1

10°
| \\\\\\x

Rademacher Complexity
decays as C/N-0.5
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Multi-Layer Neural Nets

The Committee machine

data

© P input units W
(O Khidden units
O output unit | Y
labels
N training samples

K =0(1)

o N
Limit: a=F=0(1) K — 0(1) N,P = o
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Optimal generalization

EUROPHYSICS LETTERS 15 October 1992
Ewrophys. Lett., 20 (4), pp. 375-380 (1992)

Generalization in a Large Committee Machine.

H. SCHWARZE and J. HERTZ

CONNECT, The Niels Bohr Institute and Nordita
Blegdamsvej 17, DK-2100 Copenhagen @, Denmark

(received 10 March 1992; accepted in final form 12 August 1992)

PACS. 87.10 - General, theoretical, and mathematical biophysics (inc. logic of biosystems,
quantum biology and relevant aspects of thermodynamics, information theory,
cybernetics, and bionics).

PACS. 02.50 - Probability theory, stochastic processes, and statistics.

PACS. 64.60C - Order-disorder and statistical mechanics of model systems.



Optimal generalization

EUROPHYSICS LETTERS 15 October 1992
Ewrophys. Lett., 20 (4), pp. 375-380 (1992)

Generalization in a Large Committee Machine.
J. Phys. A: Math. Gen. 26 (1993) 5781-5794. Printed in the UK
H. SCHWAR ‘

CONNECT
Blegdamsuve

(received 11 Learning a rule in a multilayer neural network

PACS. 87.10

H Schwarze

CONNECT, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen @, Denmark
PACS. 02.50
PACS. 64.60 Received 4 June 1993

Abstract. The problem of learning from examples in multilayer networks is studied within
the framework of statistical mechanics. Using the replica formalism we calculate the average
generalization error of a fully connected committee machine in the limit of a large number of
hidden units. If the number of training examples is proportional to the number of inputs in the:
network, the generalization error as a function of the training set size approaches a finite value.
If the number of training examples is proportional to the number of weights in the network we
find first-order phase transitions with a discontinuous drop in the generalization error for both
binary and continnous weights.
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Heuristic tools from statistical physics have been used in the past to locate the

phase transitions and compute the optimal learning and generalization errors in
the teacher-student scenario in multi-layer neural networks. In this contribution,
we provide a rigorous justification of these approaches for a two-layers neural
network model called the committee machine. We also introduce a version of
the approximate message passing (AMP) algorithm for the committee machine
that allows to perform optimal learning in polynomial time for a large set of
parameters. We find that there are regimes in which a low generalization error is
information-theoretically achievable while the AMP algorithm fails to deliver it;
strongly suggesting that no efficient algorithm exists for those cases, and unveiling

a large computational gap.
NeurlPS 2018
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Committee

machine

Very large gap between typical and worst case!

No go_od Good “typical”’ performances Good "worst case
learning performances
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Efficient Optimal Algorithm



Single Layer Neural Nets

Teacher is a SLNT, Student is a SLNT

y — Cﬂg(Z) — Cﬂg(x ) W) Pout(y‘z) — EPg [5(y T pr(z)]



APPROXIMATE MESSAGE PASSING
(AMP)

» No optimal and efficient algorithm during the classic period of stat-mech of
neural nets (e.g. State of the art: MCMC for binary perceptron when P<50)

» Spectacular recent progress on AMP, a mean-field method “on steroid”:

» Thouless-Anderson-Palmer 76 (TAP): improved mean-field equations
» George-Yeddida '91:TAP 1s a correction to standard mean-field

» Applying TAP to various problems: Neural networks Mezard 89,
Hopfield model Sompolinsky 92, Error-correction Tanaka '02

» TAP becomes an ierative algorithm “AMP”: Donoho, Maleki,

Montanari'09 for compressed sensing and linear estimation,

Rangan’l 0 generic output for linear estimation

> Rigorous results on AMP: Bolthausen ‘09, Bayati, Montanari’10,
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AMP FOR TEACHER-STUDENT

Algorithm 2 Generalized Approximate Message Passing (G-AMP)

Input: y
Initialize: a
repeat

AMP Update of wy, V,

0_0 0
Vo gout,/,u t=1

t 2 t—1
‘_ZFMH

VM
e X Bt
AMP Update of X;, R;, Jout,pu \

Onsager
terms

gout,p, — Jout (wp,a y}ta V )

AMP Update of the estimated marginals a;, v; . .
ot (St RY Simple to implement, only

of  fo(SE R matrix multiplications, O(N2)
t—t+1
until Convergence on a,v
output: a,v.

fdxa:PX(:c)e

(B R) = S0pfa(B.R) . g (g V) = L 9 Peu¥]2) (2 —w) e T

fa(S,R) = i
J dz Px(z) e~ V [ dzPout(y|z)e™ i




WHY DO WE ¥ AMP?
STATE EVOLUTION

N,M — co,a = M/N = O(1)
Define: = 'a: then MSE{) =p—m'

mt in the AMP algorithm evolves as:
mt_l_l — Qamq)px (mt)

m' =200, Pp,, (m'; p)
Recall the RS free energy we proved few slides ago?

frs(m,m) = ®p, () + a®p, . (m;p)

» AMP is doing a “gradient” descent in the replica free energy




AMP vs Optimal learning

Real value case
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FIRST ORDER AND
THE HARD PHASE!

fRS A

Johannes Dideri Tr<T
van der Wael<
Tamp < T < Tir
T < Tamp
EASY HARD IMPOSSIBLE

1 low temperature high temperature
¥ more data | ess data




Hard phases everywhere!

Identified in probabilistic models for:
stochastic block model

dense planted sub-matrix;
low-rank tensor completion;

compressed sensing;

planted constraint satisfaction;

Gaussian mixture clustering;

low-density parity check error correcting codes;
sparse principal component analysis;
generalised linear regression;

dictionary learning;

blind source separation;

learning in binary perceptron;

phase retrieval; ...

VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV Vv VY

e o ) Statistical physics of inference: thresholds
JAVEICS. - Advances in Physics >

f‘ Volume 65, 2016 - Issue 5 and algor itth

Lenka Zdeborova ¥ & Florent Krzakala



Multi-Layer Neural Nets

The Committee machine

data

© P input units W
(O Khidden units
O output unit | Y
labels
N training samples

K =0(1)

o N
Limit: a=F=0(1) K — 0(1) N,P = o



Sanjeev Arora at ICML’18: Tutorial on theory of deep learning.

Overparametrization may help optimization : facebook

folklore experiment e.g [Livni et al'14]

N
Al

‘ Input Layer

Diftiault t¢ train a new net
using this labeled data

hidden layer of size n with same # of hidden nodes

Still no theorem Much easier to train a new net with

explaining this... bigger hidden layer!

7/10/2018 Theoretically understanding deep learning
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Optimal generalization
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No good
learning

Committee machine

Very large gap between typical and worst case!

Good “typical” Good “worst case”
performances performances

i
oy = O(PK) oy = O(Ky/1log(K))

v | =



Committee machine

Very large gap between typical and worst case!

No good Good “worst case” Algorithmically
learning Good “typical” performances doable

performances .
I I > P

|
opr = O(PK) ayr = O(Ky/log(K)) app = O(K?)







Online learning with SGD

Generalisation dynamics of online learning in
over-parameterised neural networks

Sebastian Goldt', Madhu S. Advani?, Andrew M. Saxe?,

Florent Krzakala* and Lenka Zdeborova!

arxiv:1901.09085



Gradient-Descent, one sample at a time...

1
At each time, minimize:  E({ W}, Xi) — 5(¢(W, Xi) — yi)z

-----
- ..

Weight decay oo el
E Learning rate

K H
™t
Wk

1 _
Wi = W=
NE:

VEW) | iy

Stochastic Gradient



Gradient-Descent, one sample at a time...

K
1 _ wywt
Wk _Wk

"
Wi

PV VWl

V1)

Can be analysed efficiently in teacher/student setting
by a ordinary differential equations in the teacher/student case

Single Layer
W. Kinzel and P. Rujan ’90

C.W.H.Mace & A.C.C.Coolen ‘98
E. Oja and J. Karhunen ’85

Multi-Layer

M. Biehl and H. Schwarze '95
Saad and S.A. Solla ’95

Last talk by Andrea (Different setting...)
Wang & Lu ‘16
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The committee machine
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Figure 2. The analytical description of the generalisation dynamics of sigmoidal networks (solid) matches simulations (crosses).
We show learning curves €, («) obtained by integration of the ODEs (12) (solid). From left to the right, we vary the variance of the
teacher’s output noise o, the learning rate 7, and the number of hidden units in the student K. For each combination of parameters shown
in the plots, we ran a single simulation of a network with N = 784 and plot the generalisation observed (crosses). kK = 0 in all cases.

https://github.com/sgoldt/pyscm
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Asymptotic generalisation error

* 0-277 M 2

Derived for Sigmoidal networks

Very robust scaling!

. * 1 2 2
Linear model €g = ;N0 (L+ M)+ 0 (n°)



Asymptotic generalisation error

o°n M
« L | O 2
69 DVt \/g + (77 )

Derived for Sigmoidal networks

Very robust scaling!

Relu models

b)10_3‘§ Cb.OOOS‘ 4 M=4
- M=16
1074 0.0004 A
105 + & 0.0003"
W E W
10-6. 0.0002 -
. 0.0001 -
10_73
10-3 10-2 1071 O 4 8 12 16 20
n L

Figure 5. The final generalisation error of over-parametrised ReLU networks scales as ¢, ~ no? L. Simulations confirm that the
asymptotic generalisation error €. of a RelLU student learning from a RelLU teacher scales with the learning rate 7, the variance of the



Asymptotic generalisation error

* 0-277 M 2

Derived for Sigmoidal networks

Very robust scaling!

Structured patterns (i.e. MNIST)

In random teacher-student - —}— Control
10-1 - \ MNIST
*wc’ 10_2_:'
-3 /
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-2 0 2 4 6 8 10 12 14 16
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€)= o (L | %) + O(n?)
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Asymptotic generalisation error

* 0-277 M 2

Online learning works and generalize well...

... even in the overparametrized regime!

However ! Notice the scaling €; <L

Time is samples:
Overparametrized students require larger training set!
Online SGD does not perform magic



time = sample

The hard phase is still hard!

time = samples needed to converge grows as PK2, just as for AMP
Over-parametrization and SGD do not perform magic in the hard region

10° -

10° -

M
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Teacher-Student Scenario

*Allows for a detailed analytical description (& some mathematically rigorous statements)
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Teacher-Student Scenario

*Rich picture for optimal generalization, Rademacher bounds, various algorithms, etc...
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Teacher-Student Scenario

*Old topic, but still much to do and many recent works in this setting
(e.g. Zecchina’s group, see also Marylou Gabrie’s poster on mutual information)
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* What is needed now ? (a) Realistic teacher, with structured and correlated data
(b) More studies on over-parametrized models




Teacher-Student Scenario

* What is needed now ? (a) Realistic teacher, with structured and correlated data
(b) More studies on over-parametrized models
(c) More studies on practical algorithms




