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What is everything made of?

What laws describe the properties of matter?

The structure of matter 
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The structure of matter

The Standard Model of nuclear and 
particle physics



The structure of matter 

Nuclear structure from the 
Standard Model

Emergence  
of complex 
structure in 
nature Backgrounds 

and benchmarks 
for searches for 
new physics



Dark matter direct detection

Neutrino physics

Charged lepton flavour violation, ββ-decay,  
proton decay, neutron-antineutron oscillations…

Sensitivity to probe the rarest Standard Model 
interactions 
Search for beyond—Standard-Model effects

The search for new physics

Precise experiments seek new physics 
at the “Intensity Frontier”



Precise experiments seek new physics 
at the “Intensity Frontier”

The search for new physics

EXPERIMENTS USE NUCLEAR 
TARGETS  

 
NEED TO UNDERSTAND 

STANDARD MODEL PHYSICS  
OF NUCLEI

Sensitivity to probe the rarest Standard Model 
interactions 
Search for beyond—Standard-Model effects



Study nuclear structure from the strong interactions

Quantum Chromodynamics (QCD)

Strongest of the four forces in nature

Strong interactions

Binds quarks and 
gluons into 
protons, neutrons, 
pions etc.

Binds protons and 
neutrons into nuclei

Forms other types 
of exotic matter 
e.g., quark-gluon 
plasma 



Interaction strength depends on energy  
[Gross, Politzer, Wilczek, Nobel 2004]

Strong interactions

Strong coupling

Energy

Perturbation theory 
at high energies
Oexact = O0 +O1↵s +O2↵

2
s + . . .

Oexact = O0 +O1↵s +O2↵
2
s + . . .

Low-energy QCD 
is non-perturbative



Lattice QCD

Numerical first-principles approach to  
non-perturbative QCD

Discretise QCD onto 4D space-time 
lattice 

Calculate physical quantities 

Run on supercomputers and dedicated 
clusters 

Take limit of vanishing discretisation, 
infinite volume, physical quark masses



QCD equations           integrals over the values of quark and 
gluon fields on each site/link (QCD path integral)

~1012 variables (for state-of-the-art)

Lattice QCD

Evaluate by importance 
sampling
Paths near classical action  
dominate
Calculate physics on a set 
(ensemble) of samples of 
the quark and gluon fields

x

tt0 t1 t2 tn

xA

xB

Numerical first-principles approach to  
non-perturbative QCD



Euclidean space-time
•Finite lattice spacing
•Volume
•Boundary conditions

x128

Lattice QCD

t ! i⌧

hOi =
1
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hOi '
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Nconf

NconfX

i

O([U i])

Approximate the QCD path integral by Monte Carlo

with field configurations        distributed according toU i e�S[U ]

a

L3 ⇥ T = 643 ⇥ 128
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Numerical first-principles approach to  
non-perturbative QCD



Correlation decays exponentially  
with distance in time: 
 
 
 
At late times: 

Ground state mass revealed  
through “effective mass plot” 
 

Doing lattice QCD

! Z0 exp(�E0t)

all eigenstates with q#’s of proton time
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Workflow of a lattice QCD calculation

Lattice QCD

Generate configurations  
via Hybrid Monte Carlo

Leadership-class computing

~100K cores or 1000GPUs, 10’s of  TF-years

O(100-1000) configurations, each ~10-100GB

Compute propagators
Large sparse matrix inversion

~few 100s GPUs

10x gauge field in size, many per config

Contract into 
correlation functions

~few GPUs

O(100k-1M) copies 

1

2 3



Predictions for new states with 
controlled uncertainties

Ground state hadron 
spectrum reproduced

p-n mass splitting 
reproduced

…

Lattice QCD works
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Lattice QCD (Brown et al., 2014)

FIG. 15. Our results for the masses of charmed and/or bottom baryons, compared to the experimental results where available
[8, 10, 12]. The masses of baryons containing nb bottom quarks have been o↵set by �nb · (3000 MeV) to fit them into this plot.
Note that the uncertainties of our results for nearby states are highly correlated, and hyperfine splittings such as M⌦⇤

b
� M⌦b

can in fact be resolved with much smaller uncertainties than apparent from this figure (see Table XIX).

[Z Brown et al. PRD 2014]

Recently determined 
by LHCb experiment

Science 347:1452-1455,2015



Nuclear physics from LQCD
Nuclei on the lattice: HARD 

Noise:  
Statistical uncertainty grows 
exponentially with number 
of nucleons

Complexity:  
Number of contractions 
grows factorially

time

COST

Calculations possible for A<5 (unphysically heavy quark masses)



How finely tuned is the emergence of nuclear 
structure in nature?

Interpretation of intensity-frontier experiments

Scalar matrix elements in A=131 
XENON1T dark matter direct detection search

Axial form factors of Argon A=40 
DUNE long-baseline neutrino expt.

Double-beta decay rates of Calcium A=48

Motivation: ML for LQCD

Need exponentially  
improved algorithms

Exponentially harder  
problems

First-principles nuclear physics beyond A=4



Machine learning for LQCD

APPROACH 
Machine learning as ancillary tool for 

lattice QCD

Accelerate gauge-field  
generation

Optimise extraction of physics  
from gauge field ensemble

ONLY apply where quantum field theory can be 
rigorously preserved

} Will need to 
accelerate all stages 

of lattice QCD 
workflow to achieve 

physics goals



Workflow of a lattice QCD calculation

Lattice QCD

Generate configurations  
via Hybrid Monte Carlo

Leadership-class computing

~100K cores or 1000GPUs, 10’s of  TF-years

O(100-1000) configurations, each ~10-100GB

Compute propagators
Large sparse matrix inversion

~few 100s GPUs

10x gauge field in size, many per config

Contract into 
correlation functions

~few GPUs

O(100k-1M) copies 

1

2 3



Workflow of a lattice QCD calculation

Lattice QCD

Generate configurations  
via Hybrid Monte Carlo

Leadership-class computing

~100K cores or 1000GPUs, 10’s of  TF-years

O(100-1000) configurations, each ~10-100GB

Compute propagators
Large sparse matrix inversion

~few 100s GPUs

10x gauge field in size, many per config

Contract into 
correlation functions

~few GPUs

O(100k-1M) copies 

1

2 3



Gauge field configurations represented by  
~107 links             encoded as SU(3) matrices  
(3x3 complex matrix      with                  ,                 )  
i.e., ~109 double precision numbers

Configurations sample probability distribution 
corresponding to LQCD action (function that defines 
the quark and gluon dynamics)

Weighted averages over configurations 
determine physical observables of interest

Calculations use ~103 configurations

Workshop track - ICLR 2018

NEURAL NETWORK PARAMETER REGRESSION FOR
LATTICE QUANTUM CHROMODYNAMICS SIMULATIONS
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ABSTRACT

Nuclear and particle physicists seek to understand the structure of matter at the
smallest scales through numerical simulations of lattice Quantum Chromodynam-
ics (LQCD) performed on the largest supercomputers available. Multi-scale tech-
niques have the potential to dramatically reduce the computational cost of such
simulations, if a challenging parameter regression problem matching physics at
different resolution scales can be solved. Simple neural networks applied to this
task fail because of the dramatic inverted data hierarchy that this problem dis-
plays, with orders of magnitude fewer samples typically available than degrees
of freedom per sample. Symmetry-aware networks that respect the complicated
invariances of the underlying physics, however, provide an efficient and practical
solution. Further efforts to incorporate invariances and constraints that are typical
of physics problems into neural networks and other machine learning algorithms
have potential to dramatically impact studies of systems in nuclear, particle, con-
densed matter, and statistical physics.

1 DATA

LQCD is a Markov Chain Monte-Carlo (MCMC) importance sampling method based on the gen-
eration of ensembles of configurations of the underlying physical degrees of freedom (quark and
gluon fields) Rothe (1992). Configurations are represented as sets of links Uµ(x) between sites on
four-dimensional hypercubic space-time lattices (x denotes the spacetime coordinates of the origin
site and µ the direction of the link). Each link can be encoded as an SU(3) matrix (a 3⇥ 3 complex
matrix M with M�1 = M† and det[M ] = 1, where M† = (M⇤)T is the Hermitian conjugate),
and a configuration is encoded by O(107) links, i.e., O(109) floating point or double precision
numbers for a typical state-of-the-art calculation. Since these configurations sample the probability
distribution corresponding to the LQCD action (a function defining the quark and gluon dynamics),
weighted ensemble averages determine physical observables of interest; calculations typically use
ensembles of O(103) configurations.

The parameter regression task studied here is the determination of the LQCD action parameters, �
and m, corresponding to a given ensemble of configurations. Because of the significantly inverted
data hierarchy of LQCD datasets, this is a challenging problem. However, the physics encoded by
an ensemble of configurations is invariant under a number of complex symmetries, namely discrete
space-time translations and rotations on the hypercubic space, as well as ‘gauge transformations’.
The latter are continuous Lie group transformations at each space-time point on the lattice, i.e.,

1

M
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det[M ] = 1
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M�1 = M†
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ABSTRACT

Nuclear and particle physicists seek to understand the structure of matter at the
smallest scales through numerical simulations of lattice Quantum Chromodynam-
ics (LQCD) performed on the largest supercomputers available. Multi-scale tech-
niques have the potential to dramatically reduce the computational cost of such
simulations, if a challenging parameter regression problem matching physics at
different resolution scales can be solved. Simple neural networks applied to this
task fail because of the dramatic inverted data hierarchy that this problem dis-
plays, with orders of magnitude fewer samples typically available than degrees
of freedom per sample. Symmetry-aware networks that respect the complicated
invariances of the underlying physics, however, provide an efficient and practical
solution. Further efforts to incorporate invariances and constraints that are typical
of physics problems into neural networks and other machine learning algorithms
have potential to dramatically impact studies of systems in nuclear, particle, con-
densed matter, and statistical physics.

1 DATA

LQCD is a Markov Chain Monte-Carlo (MCMC) importance sampling method based on the gen-
eration of ensembles of configurations of the underlying physical degrees of freedom (quark and
gluon fields) Rothe (1992). Configurations are represented as sets of links Uµ(x) between sites on
four-dimensional hypercubic space-time lattices (x denotes the spacetime coordinates of the origin
site and µ the direction of the link). Each link can be encoded as an SU(3) matrix (a 3⇥ 3 complex
matrix M with M�1 = M† and det[M ] = 1, where M† = (M⇤)T is the Hermitian conjugate),
and a configuration is encoded by O(107) links, i.e., O(109) floating point or double precision
numbers for a typical state-of-the-art calculation. Since these configurations sample the probability
distribution corresponding to the LQCD action (a function defining the quark and gluon dynamics),
weighted ensemble averages determine physical observables of interest; calculations typically use
ensembles of O(103) configurations.

The parameter regression task studied here is the determination of the LQCD action parameters, �
and m, corresponding to a given ensemble of configurations. Because of the significantly inverted
data hierarchy of LQCD datasets, this is a challenging problem. However, the physics encoded by
an ensemble of configurations is invariant under a number of complex symmetries, namely discrete
space-time translations and rotations on the hypercubic space, as well as ‘gauge transformations’.
The latter are continuous Lie group transformations at each space-time point on the lattice, i.e.,
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Multi-scale HMC updates

stationary distribution PðsÞ, then the thermalization time
will vanish.3

Next, let us introduce operators that map probability
distributions between fine and coarse configuration
spaces. Borrowing the terminology of multigrid, we refer
to these as restriction operators, R, when mapping from
the fine to coarse configuration space and prolongation
operators, Q, when mapping from the coarse to fine
configuration space. To facilitate the discussion, we adorn
all coarse and fine quantities with the labels (c) and (f),
respectively. For example, fine and coarse configurations
are labeled as sf ∈ Σf and sc ∈ Σc, where Σf and Σc

represent the fine and coarse configuration spaces, respec-
tively. The restrictor and prolongator can be represented
by the matrices Rðsc; sfÞ and Qðsf; scÞ which act on fine
and coarse configuration spaces, respectively. The restric-
tor and prolongator should be probability preserving, and
therefore must satisfy

P
sfQðsf; scÞ ¼

P
scRðsc; sfÞ ¼ 1.

Such transformations can be one to one, in which case the
rectangular matrices R and Q have at most one nonzero
entry per row and column, or they can be probabilistic.
Both restriction and prolongation operations are nonun-
ique, need not satisfy RQ ¼ 1, and cannot satisfy QR ¼
1 since the rank of Q and R is that of dimðΣcÞ and not
dimðΣfÞ. Explicitly, the restriction operation acting on a
fine probability distribution Pf produces a coarse prob-
ability distribution, given by

PcðscÞ ¼
X

sf
Rðsc; sfÞPfðsfÞ; ð11Þ

and can be interpreted as a renormalization group trans-
formation (e.g., decimation or block spin averaging in a

simple implementation). This can be seen by noting the
equality of partition functions

P
scP

cðscÞ ¼
P

sfP
fðsfÞ.

On the other hand, the prolongation operation maps a
coarse probability distribution to a fine distribution, given
by

PfðsfÞ ¼
X

sc
Qðsf; scÞPcðscÞ; ð12Þ

and can be interpreted as a kind of inverse RG
transformation.
With the concepts of restriction and prolongation in

hand, consider a simulation represented schematically by
Fig. 2(b), corresponding to the scenario in which Ns ¼ 1
and Ne ≫ 1. Here, evolution is first performed on a coarse
lattice using an algorithm represented by the coarse
transition matrixMc (which implicitly depends on a coarse
action) until it is thermalized. Subsequently the lattice is
prolongated, and finally rethermalized using an algorithm
represented by the fine transition matrix Mf. Note that the
subsequent rethermalization is needed to correct the pro-
longated configuration at the scale of the fine cutoff. In this
example, there are now three relevant time scales associated
with the algorithm in its entirety: the coarse thermalization
time τctherm, the rethermalization time τfretherm, and the
decorrelation time of the fine evolution, bounded by
2τ̂fint. The procedure represented by Fig. 2(b) will be
computationally less costly than that shown in Fig. 2(a)
provided τctherm þ τfretherm < τftherm. Nevertheless, the
improvements that can be found here are attenuated by
the cost of the generation of a large ensemble since
τftherm=ðNe2τ̂

f
intÞ → 0 as Ne → ∞.

As previously discussed, the rethermalization time of the
prolongated configuration is at worst governed by the time
scale τfexp, which is algorithm dependent, and overlap
factors, which depend in part on the initial refined

(a)

(b)

(c)

FIG. 2. Ensemble generation strategies: single fine lattice stream (a), single coarse lattice stream, followed by refinement followed by a
single fine lattice stream (b), and a single coarse lattice stream, followed by parallel refinement and rethermalization of refined lattices
(c). In all cases, ⊞ represents a fine configuration, □ represents a coarse configuration, unshaded shapes correspond to unthermalized
configurations and shaded shapes correspond to thermalized configurations. For each simulation strategy, ensemble averages are
performed over shaded (fine) configurations, either generated from a single stream (a,b) or in parallel (c).

3Strictly speaking, it does not make sense to talk about a
thermalized configuration, but rather a configuration that is drawn
from a thermalized distribution.

MULTISCALE MONTE CARLO EQUILIBRATION: PURE … PHYSICAL REVIEW D 92, 114516 (2015)

114516-5

Usual HMC algorithm
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stationary distribution PðsÞ, then the thermalization time
will vanish.3
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Fig. 2(b), corresponding to the scenario in which Ns ¼ 1
and Ne ≫ 1. Here, evolution is first performed on a coarse
lattice using an algorithm represented by the coarse
transition matrixMc (which implicitly depends on a coarse
action) until it is thermalized. Subsequently the lattice is
prolongated, and finally rethermalized using an algorithm
represented by the fine transition matrix Mf. Note that the
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longated configuration at the scale of the fine cutoff. In this
example, there are now three relevant time scales associated
with the algorithm in its entirety: the coarse thermalization
time τctherm, the rethermalization time τfretherm, and the
decorrelation time of the fine evolution, bounded by
2τ̂fint. The procedure represented by Fig. 2(b) will be
computationally less costly than that shown in Fig. 2(a)
provided τctherm þ τfretherm < τftherm. Nevertheless, the
improvements that can be found here are attenuated by
the cost of the generation of a large ensemble since
τftherm=ðNe2τ̂

f
intÞ → 0 as Ne → ∞.

As previously discussed, the rethermalization time of the
prolongated configuration is at worst governed by the time
scale τfexp, which is algorithm dependent, and overlap
factors, which depend in part on the initial refined

(a)

(b)

(c)

FIG. 2. Ensemble generation strategies: single fine lattice stream (a), single coarse lattice stream, followed by refinement followed by a
single fine lattice stream (b), and a single coarse lattice stream, followed by parallel refinement and rethermalization of refined lattices
(c). In all cases, ⊞ represents a fine configuration, □ represents a coarse configuration, unshaded shapes correspond to unthermalized
configurations and shaded shapes correspond to thermalized configurations. For each simulation strategy, ensemble averages are
performed over shaded (fine) configurations, either generated from a single stream (a,b) or in parallel (c).

3Strictly speaking, it does not make sense to talk about a
thermalized configuration, but rather a configuration that is drawn
from a thermalized distribution.

MULTISCALE MONTE CARLO EQUILIBRATION: PURE … PHYSICAL REVIEW D 92, 114516 (2015)
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stationary distribution PðsÞ, then the thermalization time
will vanish.3

Next, let us introduce operators that map probability
distributions between fine and coarse configuration
spaces. Borrowing the terminology of multigrid, we refer
to these as restriction operators, R, when mapping from
the fine to coarse configuration space and prolongation
operators, Q, when mapping from the coarse to fine
configuration space. To facilitate the discussion, we adorn
all coarse and fine quantities with the labels (c) and (f),
respectively. For example, fine and coarse configurations
are labeled as sf ∈ Σf and sc ∈ Σc, where Σf and Σc

represent the fine and coarse configuration spaces, respec-
tively. The restrictor and prolongator can be represented
by the matrices Rðsc; sfÞ and Qðsf; scÞ which act on fine
and coarse configuration spaces, respectively. The restric-
tor and prolongator should be probability preserving, and
therefore must satisfy

P
sfQðsf; scÞ ¼

P
scRðsc; sfÞ ¼ 1.

Such transformations can be one to one, in which case the
rectangular matrices R and Q have at most one nonzero
entry per row and column, or they can be probabilistic.
Both restriction and prolongation operations are nonun-
ique, need not satisfy RQ ¼ 1, and cannot satisfy QR ¼
1 since the rank of Q and R is that of dimðΣcÞ and not
dimðΣfÞ. Explicitly, the restriction operation acting on a
fine probability distribution Pf produces a coarse prob-
ability distribution, given by

PcðscÞ ¼
X

sf
Rðsc; sfÞPfðsfÞ; ð11Þ

and can be interpreted as a renormalization group trans-
formation (e.g., decimation or block spin averaging in a

simple implementation). This can be seen by noting the
equality of partition functions

P
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cðscÞ ¼
P

sfP
fðsfÞ.

On the other hand, the prolongation operation maps a
coarse probability distribution to a fine distribution, given
by

PfðsfÞ ¼
X

sc
Qðsf; scÞPcðscÞ; ð12Þ

and can be interpreted as a kind of inverse RG
transformation.
With the concepts of restriction and prolongation in

hand, consider a simulation represented schematically by
Fig. 2(b), corresponding to the scenario in which Ns ¼ 1
and Ne ≫ 1. Here, evolution is first performed on a coarse
lattice using an algorithm represented by the coarse
transition matrixMc (which implicitly depends on a coarse
action) until it is thermalized. Subsequently the lattice is
prolongated, and finally rethermalized using an algorithm
represented by the fine transition matrix Mf. Note that the
subsequent rethermalization is needed to correct the pro-
longated configuration at the scale of the fine cutoff. In this
example, there are now three relevant time scales associated
with the algorithm in its entirety: the coarse thermalization
time τctherm, the rethermalization time τfretherm, and the
decorrelation time of the fine evolution, bounded by
2τ̂fint. The procedure represented by Fig. 2(b) will be
computationally less costly than that shown in Fig. 2(a)
provided τctherm þ τfretherm < τftherm. Nevertheless, the
improvements that can be found here are attenuated by
the cost of the generation of a large ensemble since
τftherm=ðNe2τ̂

f
intÞ → 0 as Ne → ∞.

As previously discussed, the rethermalization time of the
prolongated configuration is at worst governed by the time
scale τfexp, which is algorithm dependent, and overlap
factors, which depend in part on the initial refined

(a)

(b)

(c)

FIG. 2. Ensemble generation strategies: single fine lattice stream (a), single coarse lattice stream, followed by refinement followed by a
single fine lattice stream (b), and a single coarse lattice stream, followed by parallel refinement and rethermalization of refined lattices
(c). In all cases, ⊞ represents a fine configuration, □ represents a coarse configuration, unshaded shapes correspond to unthermalized
configurations and shaded shapes correspond to thermalized configurations. For each simulation strategy, ensemble averages are
performed over shaded (fine) configurations, either generated from a single stream (a,b) or in parallel (c).

3Strictly speaking, it does not make sense to talk about a
thermalized configuration, but rather a configuration that is drawn
from a thermalized distribution.
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114516-5

Usual HMC algorithm

Long thermalisation time Many steps to decorrelate 
(sample every Nth)  

decorrelation time grows 
exponentially with inverse lattice 

spacing 



Multi-scale HMC updates
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intÞ → 0 as Ne → ∞.

As previously discussed, the rethermalization time of the
prolongated configuration is at worst governed by the time
scale τfexp, which is algorithm dependent, and overlap
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FIG. 2. Ensemble generation strategies: single fine lattice stream (a), single coarse lattice stream, followed by refinement followed by a
single fine lattice stream (b), and a single coarse lattice stream, followed by parallel refinement and rethermalization of refined lattices
(c). In all cases, ⊞ represents a fine configuration, □ represents a coarse configuration, unshaded shapes correspond to unthermalized
configurations and shaded shapes correspond to thermalized configurations. For each simulation strategy, ensemble averages are
performed over shaded (fine) configurations, either generated from a single stream (a,b) or in parallel (c).
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stationary distribution PðsÞ, then the thermalization time
will vanish.3

Next, let us introduce operators that map probability
distributions between fine and coarse configuration
spaces. Borrowing the terminology of multigrid, we refer
to these as restriction operators, R, when mapping from
the fine to coarse configuration space and prolongation
operators, Q, when mapping from the coarse to fine
configuration space. To facilitate the discussion, we adorn
all coarse and fine quantities with the labels (c) and (f),
respectively. For example, fine and coarse configurations
are labeled as sf ∈ Σf and sc ∈ Σc, where Σf and Σc

represent the fine and coarse configuration spaces, respec-
tively. The restrictor and prolongator can be represented
by the matrices Rðsc; sfÞ and Qðsf; scÞ which act on fine
and coarse configuration spaces, respectively. The restric-
tor and prolongator should be probability preserving, and
therefore must satisfy

P
sfQðsf; scÞ ¼

P
scRðsc; sfÞ ¼ 1.

Such transformations can be one to one, in which case the
rectangular matrices R and Q have at most one nonzero
entry per row and column, or they can be probabilistic.
Both restriction and prolongation operations are nonun-
ique, need not satisfy RQ ¼ 1, and cannot satisfy QR ¼
1 since the rank of Q and R is that of dimðΣcÞ and not
dimðΣfÞ. Explicitly, the restriction operation acting on a
fine probability distribution Pf produces a coarse prob-
ability distribution, given by

PcðscÞ ¼
X

sf
Rðsc; sfÞPfðsfÞ; ð11Þ

and can be interpreted as a renormalization group trans-
formation (e.g., decimation or block spin averaging in a

simple implementation). This can be seen by noting the
equality of partition functions

P
scP

cðscÞ ¼
P

sfP
fðsfÞ.

On the other hand, the prolongation operation maps a
coarse probability distribution to a fine distribution, given
by

PfðsfÞ ¼
X

sc
Qðsf; scÞPcðscÞ; ð12Þ

and can be interpreted as a kind of inverse RG
transformation.
With the concepts of restriction and prolongation in

hand, consider a simulation represented schematically by
Fig. 2(b), corresponding to the scenario in which Ns ¼ 1
and Ne ≫ 1. Here, evolution is first performed on a coarse
lattice using an algorithm represented by the coarse
transition matrixMc (which implicitly depends on a coarse
action) until it is thermalized. Subsequently the lattice is
prolongated, and finally rethermalized using an algorithm
represented by the fine transition matrix Mf. Note that the
subsequent rethermalization is needed to correct the pro-
longated configuration at the scale of the fine cutoff. In this
example, there are now three relevant time scales associated
with the algorithm in its entirety: the coarse thermalization
time τctherm, the rethermalization time τfretherm, and the
decorrelation time of the fine evolution, bounded by
2τ̂fint. The procedure represented by Fig. 2(b) will be
computationally less costly than that shown in Fig. 2(a)
provided τctherm þ τfretherm < τftherm. Nevertheless, the
improvements that can be found here are attenuated by
the cost of the generation of a large ensemble since
τftherm=ðNe2τ̂

f
intÞ → 0 as Ne → ∞.

As previously discussed, the rethermalization time of the
prolongated configuration is at worst governed by the time
scale τfexp, which is algorithm dependent, and overlap
factors, which depend in part on the initial refined

(a)

(b)

(c)

FIG. 2. Ensemble generation strategies: single fine lattice stream (a), single coarse lattice stream, followed by refinement followed by a
single fine lattice stream (b), and a single coarse lattice stream, followed by parallel refinement and rethermalization of refined lattices
(c). In all cases, ⊞ represents a fine configuration, □ represents a coarse configuration, unshaded shapes correspond to unthermalized
configurations and shaded shapes correspond to thermalized configurations. For each simulation strategy, ensemble averages are
performed over shaded (fine) configurations, either generated from a single stream (a,b) or in parallel (c).

3Strictly speaking, it does not make sense to talk about a
thermalized configuration, but rather a configuration that is drawn
from a thermalized distribution.
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2τ̂fint. The procedure represented by Fig. 2(b) will be
computationally less costly than that shown in Fig. 2(a)
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FIG. 2. Ensemble generation strategies: single fine lattice stream (a), single coarse lattice stream, followed by refinement followed by a
single fine lattice stream (b), and a single coarse lattice stream, followed by parallel refinement and rethermalization of refined lattices
(c). In all cases, ⊞ represents a fine configuration, □ represents a coarse configuration, unshaded shapes correspond to unthermalized
configurations and shaded shapes correspond to thermalized configurations. For each simulation strategy, ensemble averages are
performed over shaded (fine) configurations, either generated from a single stream (a,b) or in parallel (c).
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represented by the fine transition matrix Mf. Note that the
subsequent rethermalization is needed to correct the pro-
longated configuration at the scale of the fine cutoff. In this
example, there are now three relevant time scales associated
with the algorithm in its entirety: the coarse thermalization
time τctherm, the rethermalization time τfretherm, and the
decorrelation time of the fine evolution, bounded by
2τ̂fint. The procedure represented by Fig. 2(b) will be
computationally less costly than that shown in Fig. 2(a)
provided τctherm þ τfretherm < τftherm. Nevertheless, the
improvements that can be found here are attenuated by
the cost of the generation of a large ensemble since
τftherm=ðNe2τ̂

f
intÞ → 0 as Ne → ∞.

As previously discussed, the rethermalization time of the
prolongated configuration is at worst governed by the time
scale τfexp, which is algorithm dependent, and overlap
factors, which depend in part on the initial refined

(a)

(b)

(c)

FIG. 2. Ensemble generation strategies: single fine lattice stream (a), single coarse lattice stream, followed by refinement followed by a
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tion value of an operator O that defines some physical quantity is given by:

hOi =
1

Z

Z
D D ̄DAO[ ,  ̄, A] e�S[ , ̄,A] (1)

=
1

Z

Z
DUÕ[U ] e�S̃[U ]

, (2)

where Z =
R
D D ̄DA e

�S[ , ̄,A], the (anti-)fermion and gluon fields (gauge fields) are denoted
by  ( ̄) and A, and S[ ,  ̄, A] is the discretised QCD action (defined in Appendix B 1). In the
second line, the fermion and anti-fermion fields are integrated out exactly, and the gauge fields are
transformed to link fields U = e

iA, to give an e↵ective action S̃[U ] and operator Õ[U ] depending
only on the gluon link fields. The resulting integral can be approximated as

hOi u 1

Ncfg

NcfgX

i=1

O[Ui], (3)

where the gauge field configurations Ui (i indexes the configurations in a given “ensemble” of

fields) are distributed according to the probability measure e
�S̃[U ]. In practice, this is guaranteed

by sampling the fields from a Markov chain Monte-Carlo stream for which this probability measure
is a fixed point. These representative gauge fields are the input data for the ML approaches to
parametric regression studied here. For additional details of the LQCD approach, see Refs. [2, 3]
and Appendix B 1.

Lattice QCD gauge fields are represented as links between sites on a 4-dimensional lattice
of volume2 V = L

3
⇥ T , with the lattice sites separated by some physical distance a, typically

0.05–0.15 fm. Each link, labelled by Uµ(x), where x denotes the spacetime coordinates of the
origin site and µ the direction of the link, is encoded by an SU(3) matrix (a 3 ⇥ 3 complex
matrix M with M

�1 = M
† and det[M ] = 1)3. Links in opposing directions are related via

U�µ(x) = U
†
µ(x � µ̂), and only links in the positive direction are stored. In this format, a gauge

field used in typical modern lattice QCD calculations, where for example L = 64 and T = 128, is
described by L

3
⇥T ⇥4⇥18 ⇡ O(109) floating point or double precision numbers, where the factor

of 4 arises from the number of positive spacetime directions (labelled by µ). In order to recover
QCD results, calculations must be performed on a number of ensembles of field configurations with
di↵erent lattice spacings a and lattice volumes V , and the continuum (a ! 0) and large-volume
(V ! 1) limits must be taken.

The governing equations of QCD and their lattice counterparts have a variety of symmetries,
some that are highly non-trivial. The symmetries satisfied by ensembles of gauge fields are of par-
ticular interest in the context of the ML approaches studied here, as they place strong restrictions
on numerical operations that can be performed on lattice data to extract physically meaningful
results. In particular, lattice QCD is invariant under a local symmetry of the gauge fields known
as a gauge symmetry; this is an invariance under local multiplications of link variables by SU(3)
matrices

Uµ(x) ! U
0

µ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂) for all ⌦(x) 2 SU(3), (4)

referred to as a gauge transformation (note that the matrix ⌦(x) di↵ers at every spacetime point).
This symmetry is not apparent from the numerical representation of a QCD configuration, but

2 The spatial, L, and temporal, T , extents of the lattice geometry are often distinct.
3 Here, M† = (M⇤)T is the Hermitian conjugate. An SU(3) matrix can be specified by 8 real numbers, but typically
the redundant representation with 18 real numbers is used.
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(SGD), and a loss function based on least absolute devia-
tions (L1) rather than least square errors (L2), performed
better.
The predictions of the best-performing network for the

held-out validation data are shown in Fig. 11. While these
results appear to signal the success of this approach, the
generalization ability of the network, i.e., its ability to
interpolate in parameter space, is poor. In particular:

(i) New ensembles, even those in the 10 ensembles of
Set F, generated from separate HMC streams but
with the same fβ; m0g as one of the training
ensembles, were predicted to sit at the average β
and m0 values of all ensembles included in training.
This indicates that the network did not succeed in
learning the gauge-invariance properties of lattice
QCD gauge fields, nor in parametrizing the param-
eter space of the grid of ensembles;

(ii) Configurations from the continuation of the HMC
streams used to generate the training and validation
configurations were also predicted to have different
parameters. Specifically, the next configurations in
the HMC streams were predicted to have the correct
m0 and β values, but these predictions drifted
towards the average over all training ensembles
within a few steps. This indicates that the network
is identifying some quantity with a longer autocor-
relation time than the physics quantities studied in
Sec. II A, i.e., that the configurations separated in
MC time such that they are independent by the
measure of various physics observables, are not
independent by the alternative measure found by
the network.

The majority of these features are unsurprising; infor-
mation content suggests that with Oð103Þ samples con-
taining Oð106Þ real numbers each, it is not feasible to
stochastically learn symmetries such as the gauge invari-
ance of the data, and that generalization will be challeng-
ing. This could be remedied by using far larger ensembles
of gauge field configurations for training, if that were
computationally feasible.
The ability of the network to distinguish different

streams generated at the same values of β and m0 is
interesting. In the limit of infinite stream lengths, no
calculated quantity, corresponding to a physical observable
or otherwise, can achieve this distinction. Such distinguish-
ability indicates that the streams are not completely
sampling the gauge field configuration space and is tied
to the existence of a feature, identified by the network, that
has a longer autocorrelation than those of the physics
observables studied in Sec. II A. An autocorrelation time of
the neural network feature was obtained from the output of
classification networks trained on each of the pairs of
streams in Set F, generated at the same set of action
parameters. Rather than training this network to identify the
fβ; m0g of a given gauge field as for the regression network
described previously, the classifier was trained to produce a
classification: f1; 0g for configurations from one stream,
and f0; 1g for those from a second. The network structure
used was identical to that shown in Fig. 10, with a
softmax [69] activation function used for the final layer
to provide a normalized probability interpretation for the
output: an output fa; 1 − ag for a given configuration
indicates that that sample can be identified with the first
stream with a probability a. A categorical cross-entropy

FIG. 11. Predictions of β and m0 on validation ensembles at the same parameter values as the training ensembles. The stars in the left
panel denote the parameters used to generate the ensembles, while the ellipses show the one-standard deviation confidence interval of
the predictions for the validation ensembles. The same validation data are shown as histograms in the right figure, with the intersections
of the grid lines indicating the parameters used for ensemble generation.
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correlation length than any 
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Autocorrelation times

in dimension that it is possible to display them for a
representative set of ensembles. Figure 4 shows contour
plots of ln jWn×m j from evaluations on each ensemble in the
two L=a ¼ 12 grids (Grids A and B). Figures 20, 22, and 24
(in Appendix B 2) show histograms for a subset of the loops
for each ensemble in each of Grid A, B, and C, respectively.
Clearly, some of the loops are statistically well determined,
and subsets of the ensembles can be clearly distinguished.
Ensembles in Grid C have loop distributions that are
more sharply defined than those in Grids A and B as their
larger spacetime volume enables more statistical averaging.
For large loop sizes, all ensembles become hard to
distinguish.
To perform the PCA on the loop data, a correlation

matrix between the various loop observables can be
constructed, either for a given ensemble, or, as is done
here, across a collection of ensembles. The correlation
matrix elements are

Mli;lj ¼
X

e

X

c

½Wliðe;cÞ− W̄liðeÞ%½Wljðe;cÞ− W̄ljðeÞ%
σðWliðeÞÞσðWljðeÞÞ

;

ð7Þ

where li ∈ f1 × 1; 2 × 2;…g, and e and c label the
ensemble and the configuration in that ensemble, respec-
tively. The summation over ensembles is for all ensembles
in a given grid, and X̄ and σðXÞ denote the mean and
standard deviation of the given quantity over the particular
ensemble of configurations. The eigenvalues, ei, and
eigenvectors, vi, of this correlation matrix for Grid A are
shown in Fig. 5. There are three particularly large eigen-
values. Similar pictures emerge from PCAs run on Grid B
and Grid C, indicating three dominant degrees of freedom
in the calculated Wilson loops. Histograms showing the
combinations of loops corresponding to the three dominant,
and fourth sub-dominant, eigenvectors are presented for the

FIG. 3. Autocorrelation functions ρðτÞ=ρð0Þ [left, defined in Eq. (5)] and autocorrelation times τint [right, defined in Eq. (6)] of the
pion (top) and ρ (center) two-point correlation functions at different Euclidean time separations, and of the various space-time averaged
n × m planar Wilson loops (bottom). Measurements are performed on a subset of ensemble F1, for Ntraj ¼ 4000 sequential trajectories
(Ntraj ¼ 7980 for the loops). The colors identify the type of loop and the shaded bands correspond to the uncertainties on these quantities
as determined from a bootstrap procedure using Nboot ¼ 100 bootstrap resamplings of size Ntraj.
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In order to check the validity of the HMC streams, the
evolution of simple quantities along the trajectories has
been monitored. The simplest, and computationally cheap-
est, way to produce a gauge invariant quantity from links is
to take the trace of products of links over closed loops
(“Wilson loops”). Wilson loops are defined from gauge
links as shown schematically in Fig. 2, and detailed in
Appendix B 1. Planar Wilson loopsWk×lðxÞ, with indices k
and l denoting the dimensions of the loop (with orientation
label suppressed), were computed for square loops up to
6 × 6, as well as rectangular loops of size 1 × n for
n ¼ 2;…; 12, and all possible planar orientations. The
evolution of representative loop types for the ensembles in
Grids A, B, and C, averaged over orientations and

spacetime position, is shown in Appendix B 2. For each
case, this evolution indicates that the data is well thermal-
ized after approximately 500 trajectories.
To determine the number of HMC steps required for

gauge field configurations to be independent, the autocor-
relation times of the pion and rho two-point correlation
functions, and of the same sets of Wilson loops introduced
above, have been calculated. The autocorrelation function
for a given operator O is defined as

ρðτÞ ¼
X

τ0
hðOðτ0Þ − hOiÞðOðτ0 þ τÞ − hOiÞi; ð5Þ

where τ is the trajectory difference in the autocorrelation.
This function decays exponentially as ρðτÞ ∼ exp½−τ=τexp&
at large Monte-Carlo times τ. The decay constant τexp
defines an autocorrelation time. Calculations of the auto-
correlation time using this definition can suffer from large
uncertainties, especially when τexp is small. Another
definition of the autocorrelation time is [3,47]

τint ¼
1

2
þ lim

τmax→∞

1

ρð0Þ
Xτmax

τ¼0

ρðτÞ; ð6Þ

which approaches a constant as τmax → ∞. The autocorre-
lation functions and integrated autocorrelation times τint for
the Wilson loops, and those for the zero-momentum pro-
jected pion and rho two point correlation functions, Cπ ðρÞ
(defined in Appendix B 1), are shown in Fig. 3. In all cases,
the integrated autocorrelation time is ⪅ 10 trajectories,
validating the choice to take trajectories spaced by this
distance as an uncorrelated set to form an ensemble. Other
observablesmay have different autocorrelation times, but the
observables considered here are relatively representative.4

B. Ensemble discrimination using
principle component analysis

To guide the application of ML methods to parametric
regression of gauge fields in the space defined by the sample
ensembles, the differentiability of the ensembles was
assessed using a principle component analysis (PCA) [48–
50]. Since Wilson loops are the simplest gauge-invariant
objects, the basis for the PCAwas generated by calculating a
set of square planar loops of sizes up toL=2 × L=2, aswell as
1 × n for n up to L, averaged over all possible planar
orientations and space-time locations. Averaged loops are
denoted Wj×l ¼

P
Oðj×lÞ

P
x Wj×lðxÞ, where the sum over

Oðj × lÞ is over all hypercubic transformations of the
indicated loop. The averaged loop data are sufficiently small

FIG. 1. Contours show the scale setting quantities t0 and ω0, as
well as the lattice spacing times the pion mass am π , and rho
meson mass am ρ, determined using calculations on each ensem-
ble in the two L=a ¼ 12 grids. The stars show the locations of the
ensembles from Grids A (blue) and B (orange).

FIG. 2. Diagrammatic representation of the construction of
planar Wilson loops Wk×lðxÞ, with indices k and l denoting the
dimensions of the loop (with orientation label suppressed), from
gauge links UμðxÞ.

4The topological charge of the gauge field typically has a long
autocorrelation time, but at the relatively coarse lattice spacings
used here, it will be comparable to that of the observables that are
investigated.
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In order to check the validity of the HMC streams, the
evolution of simple quantities along the trajectories has
been monitored. The simplest, and computationally cheap-
est, way to produce a gauge invariant quantity from links is
to take the trace of products of links over closed loops
(“Wilson loops”). Wilson loops are defined from gauge
links as shown schematically in Fig. 2, and detailed in
Appendix B 1. Planar Wilson loopsWk×lðxÞ, with indices k
and l denoting the dimensions of the loop (with orientation
label suppressed), were computed for square loops up to
6 × 6, as well as rectangular loops of size 1 × n for
n ¼ 2;…; 12, and all possible planar orientations. The
evolution of representative loop types for the ensembles in
Grids A, B, and C, averaged over orientations and

spacetime position, is shown in Appendix B 2. For each
case, this evolution indicates that the data is well thermal-
ized after approximately 500 trajectories.
To determine the number of HMC steps required for

gauge field configurations to be independent, the autocor-
relation times of the pion and rho two-point correlation
functions, and of the same sets of Wilson loops introduced
above, have been calculated. The autocorrelation function
for a given operator O is defined as

ρðτÞ ¼
X

τ0
hðOðτ0Þ − hOiÞðOðτ0 þ τÞ − hOiÞi; ð5Þ

where τ is the trajectory difference in the autocorrelation.
This function decays exponentially as ρðτÞ ∼ exp½−τ=τexp&
at large Monte-Carlo times τ. The decay constant τexp
defines an autocorrelation time. Calculations of the auto-
correlation time using this definition can suffer from large
uncertainties, especially when τexp is small. Another
definition of the autocorrelation time is [3,47]

τint ¼
1

2
þ lim

τmax→∞

1

ρð0Þ
Xτmax

τ¼0

ρðτÞ; ð6Þ

which approaches a constant as τmax → ∞. The autocorre-
lation functions and integrated autocorrelation times τint for
the Wilson loops, and those for the zero-momentum pro-
jected pion and rho two point correlation functions, Cπ ðρÞ
(defined in Appendix B 1), are shown in Fig. 3. In all cases,
the integrated autocorrelation time is ⪅ 10 trajectories,
validating the choice to take trajectories spaced by this
distance as an uncorrelated set to form an ensemble. Other
observablesmay have different autocorrelation times, but the
observables considered here are relatively representative.4

B. Ensemble discrimination using
principle component analysis

To guide the application of ML methods to parametric
regression of gauge fields in the space defined by the sample
ensembles, the differentiability of the ensembles was
assessed using a principle component analysis (PCA) [48–
50]. Since Wilson loops are the simplest gauge-invariant
objects, the basis for the PCAwas generated by calculating a
set of square planar loops of sizes up toL=2 × L=2, aswell as
1 × n for n up to L, averaged over all possible planar
orientations and space-time locations. Averaged loops are
denoted Wj×l ¼

P
Oðj×lÞ

P
x Wj×lðxÞ, where the sum over

Oðj × lÞ is over all hypercubic transformations of the
indicated loop. The averaged loop data are sufficiently small

FIG. 1. Contours show the scale setting quantities t0 and ω0, as
well as the lattice spacing times the pion mass am π , and rho
meson mass am ρ, determined using calculations on each ensem-
ble in the two L=a ¼ 12 grids. The stars show the locations of the
ensembles from Grids A (blue) and B (orange).

FIG. 2. Diagrammatic representation of the construction of
planar Wilson loops Wk×lðxÞ, with indices k and l denoting the
dimensions of the loop (with orientation label suppressed), from
gauge links UμðxÞ.

4The topological charge of the gauge field typically has a long
autocorrelation time, but at the relatively coarse lattice spacings
used here, it will be comparable to that of the observables that are
investigated.
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Autocorrelation time: measure of correlation length in HMC trajectory 
                      (how many steps separate independent samples)

Autocorrelation

Autocorrelation time:

h. . .i : average over confs
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[70,71] loss function was used for this training. For each
pair of streams, 600 trajectories from each stream were used
to train an instance of the network. The output of that
instance for the trajectories sequentially following the
training data defines an autocorrelation function:

ρðτÞ ¼ 2½PγðcγðτÞÞ% − 1: ð10Þ

Here, cγðτÞ labels a trajectory from stream γ ¼ fα; βg, τ steps
in Monte-Carlo time after the end of the sequence used as
training data, andPγðcγÞ denotes the probability, determined
from the network output, that trajectory c is in stream γ. The
autocorrelation function, and an autocorrelation time deter-
mined from this function by Eq. (6), are shown in Fig. 12.
Comparing to Fig. 3, it is clear that the autocorrelation timeof
the feature used by the network to distinguish streams is
approximately three times longer than the longest autocor-
relation time of the physics observables that were calculated
in Sec. II.
It is natural to speculate that the strong autocorrelation

observed in the neural network output is based on some local
features of the data, rather than features encoding the physics
of interest.7 Further investigation did not find evidence for
this interpretation; neither Moran’s I [72] nor Geary’s C [73]
tests supported the existence of correlated spatial regions in
the derivatives of the loss function with respect to inputs.
There is also no correlation of these derivatives with known
spatially-varying physical quantities such as topological
charge density and action density. While the long–correla-
tion-time feature could not be identified in this study, it
provides an interesting topic for further study. In particular, it
will be informative to investigate how this scale changeswith
parameter range, particularly in regions of parameter space

where topological charge freezing becomes a difficult
problem for simulations.

B. Custom symmetry enforcing network structure

As described in the previous section, experiments with
simple fully-connected neural networks were not success-
ful at parametric regression of lattice QCD gauge fields for
the training data sets used in this study. This is not
unexpected; learning the symmetries of gauge field con-
figurations stochastically is certain to be a challenging task.
Symmetries of lattice QCD, however, act to reduce the
effective degrees of freedom of the problem, and can be
incorporated into the structure and training of neural
networks in several ways. First, the stochastic learning
of symmetries can be accelerated through data augmenta-
tion (i.e., randomly performing a gauge transformation and/
or translation/lattice rotation on a configuration). This is
analogous to typical uses of data augmentation [74] in, for
example, image recognition [75,76], to introduce sym-
metries such as rotational symmetry.8 In practice, this was
found to be untenable for the case studied here as a result of
the large number of symmetries that must be learned, their
complex nature, and the requirement that they be strictly
observed. Second, custom network layers can be designed
(or equivalently, data can be pre-processed) to only allow
gauge invariant and lattice-symmetry invariant outputs of
the network. This approach is found to be successful.
To incorporate the symmetries of lattice QCD gauge

fields into neural network structures, several custom net-
works were designed, featuring an initial preprocessing
layer that forms only quantities that respect the invariances
of the problem, followed by fully-connected layers operat-
ing on these quantities. The possible gauge and translation-
invariant degrees of freedom that are allowed by the first

FIG. 12. Autocorrelation function in Monte-Carlo time [left, defined in Eq. (10)] and autocorrelation time [right, defined in Eq. (6)] of
the feature distinguishing two streams at the same set of parameters, trained on sequences of gauge field configurations. The
autocorrelation function was generated by averaging over many different results (trained using all different pairs of the 10 streams,
F1;…;10, at the same parameters), and was found to be robust under changes of the network structure used to generate it. The dashed
horizontal line on the right figure shows the maximum autocorrelation time of various physics observables (see Fig. 3).

7This is supported by the observation that features with similar
autocorrelation times were identified using network structures that
respect gauge-invariance, but retain full spatial information.

8The incorporation of symmetries into various neural network
structures has been studied in Refs. [77–80].
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FIG. 2: Diagrammatic representation of the construction of planar Wilson loops Wk⇥l(x), with indices k

and l denoting the dimensions of the loop (with orientation label suppressed), from gauge links Uµ(x).

where ⌧ is the trajectory di↵erence in the autocorrelation. This function decays exponentially as
⇢(⌧) ⇠ exp[�⌧/⌧exp] at large Monte-Carlo times ⌧ . The decay constant ⌧exp defines an autocor-
relation time. Calculations of the autocorrelation time using this definition can su↵er from large
uncertainties, especially when ⌧exp is small. Another definition of the autocorrelation time is [3, 47]

⌧int =
1

2
+ lim

⌧max!1

1

⇢(0)

⌧maxX

⌧=0

⇢(⌧), (6)

which approaches a constant as ⌧max ! 1. The autocorrelation functions and integrated autocor-
relation times ⌧int for the Wilson loops, and those for the zero-momentum projected pion and rho
two point correlation functions, C⇡(⇢) (defined in Appendix B 1), are shown in Fig. 3. In all cases,
the integrated autocorrelation time is / 10 trajectories, validating the choice to take trajectories
spaced by this distance as an uncorrelated set to form an ensemble. Other observables may have
di↵erent autocorrelation times, but the observables considered here are relatively representative4.

B. Ensemble discrimination using principle component analysis

To guide the application of ML methods to parametric regression of gauge fields in the space
defined by the sample ensembles, the di↵erentiability of the ensembles was assessed using a principle
component analysis (PCA) [48–50]. Since Wilson loops are the simplest gauge-invariant objects,
the basis for the PCA was generated by calculating a set of square planar loops of sizes up to
L/2 ⇥ L/2, as well as 1 ⇥ n for n up to L, averaged over all possible planar orientations and
space-time locations. Averaged loops are denoted Wj⇥l =

P
O(j⇥l)

P
x Wj⇥l(x), where the sum

over O(j ⇥ l) is over all hypercubic transformations of the indicated loop. The averaged loop data
are su�ciently small in dimension that it is possible to display them for a representative set of
ensembles. Fig. 4 shows contour plots of ln |Wn⇥m| from evaluations on each ensemble in the two
L/a = 12 grids (Grids A and B). Figs. 20, 22, and 24 (in Appendix B 2) show histograms for a
subset of the loops for each ensemble in each of Grid A, B, and C, respectively. Clearly, some of the
loops are statistically well determined, and subsets of the ensembles can be clearly distinguished.
Ensembles in Grid C have loop distributions that are more sharply defined than those in Grids A
and B as their larger spacetime volume enables more statistical averaging. For large loop sizes, all
ensembles become hard to distinguish.

4 The topological charge of the gauge field typically has a long autocorrelation time, but at the relatively coarse
lattice spacings used here, it will be comparable to that of the observables that are investigated.
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FIG. 12: Autocorrelation function in Monte-Carlo time (left, defined in Eq. (10)) and autocorrelation time
(right, defined in Eq. (6)) of the feature distinguishing two streams at the same set of parameters, trained on
sequences of gauge field configurations. The autocorrelation function was generated by averaging over many
di↵erent results (trained using all di↵erent pairs of the 10 streams, F1,...,10, at the same parameters), and
was found to be robust under changes of the network structure used to generate it. The dashed horizontal
line on the right figure shows the maximum autocorrelation time of various physics observables (see Fig. 3).

spatially-varying physical quantities such as topological charge density and action density. While
the long–correlation-time feature could not be identified in this study, it provides an interesting
topic for further study. In particular, it will be informative to investigate how this scale changes
with parameter range, particularly in regions of parameter space where topological charge freezing
becomes a di�cult problem for simulations.

B. Custom symmetry enforcing network structure

As described in the previous section, experiments with simple fully-connected neural networks
were not successful at parametric regression of lattice QCD gauge fields for the training data sets
used in this study. This is not unexpected; learning the symmetries of gauge field configurations
stochastically is certain to be a challenging task. Symmetries of lattice QCD, however, act to
reduce the e↵ective degrees of freedom of the problem, and can be incorporated into the structure
and training of neural networks in several ways. First, the stochastic learning of symmetries
can be accelerated through data augmentation (i.e., randomly performing a gauge transformation
and/or translation/lattice rotation on a configuration). This is analogous to typical uses of data
augmentation [74] in, for example, image recognition [75, 76], to introduce symmetries such as
rotational symmetry8. In practice, this was found to be untenable for the case studied here as
a result of the large number of symmetries that must be learned, their complex nature, and the
requirement that they be strictly observed. Secondly, custom network layers can be designed
(or equivalently, data can be pre-processed) to only allow gauge invariant and lattice-symmetry
invariant outputs of the network. This approach is found to be successful.

To incorporate the symmetries of lattice QCD gauge fields into neural network structures,
several custom networks were designed, featuring an initial pre-processing layer that forms only
quantities that respect the invariances of the problem, followed by fully-connected layers operating
on these quantities. The possible gauge and translation-invariant degrees of freedom that are
allowed by the first layer are specified by hand; in principle this choice could be part of the

8 The incorporation of symmetries into various neural network structures has been studied in Refs. [77–80].
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Network based on symmetry-invariant features

Loops 
Correlated products of loops at 

various length scales

Symmetry-preserving network



Fully-connected 
network structure

First layer samples 
from set of 
possible 
symmetry-
invariant features  

Network based on symmetry-invariant features

Number of degrees of freedom of network 
comparable to size of training dataset

Symmetry-preserving network
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Parameter related  
to lattice spacing

Training and validation 
datasets

Parameters of training and 
validation datasets

O(10,000) independent 
configurations 
generated at each point

Validation 
configurations 
randomly selected from 
generated streams

Spacing in evolution stream >> correlation 
time of physics observables

New simulation strategies 
for lattice gauge theory
Michael G. Endres Lattice 2016

Multiscale Monte Carlo equilibration: Pure Yang-Mills theory
Michael G. Endres, Richard C. Brower, William Detmold, Kostas Orginos, Andrew V. Pochinsky

Multigrid  ideas for HMC
Very important and difficult problem
Major focus of US Exascale Software
project
(see Poster by Mike Endres)
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Gauge field parameter regression
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Parameter related  
to lattice spacing

Neural net predictions 
on validation data sets

True parameter values

Confidence interval from  
ensemble of gauge fields
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Uncertainty in direction of constant 
1x1 plaquette  
(simplest gauge-invariant object)

Regression does not need to be exact 
— corrected by rethermalisation  
(also, cannot be exact; a given gauge 
field could, with some probability, have 
been generated from a different 
action)



Gauge field parameter regression
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Parameter related  
to lattice spacing

Neural net predictions 
on validation data sets

True parameter values

Confidence interval from  
ensemble of gauge fields
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Predictions on  
new datasets
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How does neural network regression perform compared 
with other approaches?

Consider very closely-spaced validation ensembles at new 
parameters

Tests of network success

Much closer spacing 
than separation of 
training ensembles

Set B

Set A

Sets along lines of constant 
1x1 Wilson loop (most 
precise feature allowed by 
network)



How does neural network regression perform compared 
with other approaches?

Consider very closely-spaced validation ensembles at new 
parameters

where M ¼ 1
2 ðPþ Q Þ, and D KLðPkQÞ is the Kullback-

Leibler divergence [53], defined as

D KLðPkQ Þ ¼
Z

dxPðxÞlog2
PðxÞ
QðxÞ

: ð9Þ

The Jensen-Shannon divergence is bounded by
0 ≤ D JSðPkQÞ ≤ 1, with D JS ¼ 0 if and only if Q ¼ P
almost everywhere, and larger values denoting lower overlap
between distributions. The square root of the Jensen-
Shannon divergence provides a well-defined metric [54,55].
As a test of differentiability, the Jensen-Shannon diver-

gences were calculated between all pairs of three-dimen-
sional probability distributions defined by the three
dominant eigenvectors of the loop correlation matrix for
each ensemble in Grid A.5 To do this, each distribution was
first interpolated over the samples from the given ensemble
using smooth kernel distributions. The resulting values of
D JS are shown pictorially in Fig. 7 for all pairs of the 19
ensembles in Grid A. Clearly, the dominant eigenvectors in
loop space allow excellent differentiation between most
pairs of ensembles, with approximately 8 out of 171
independent pairs that are only weakly, or not at all,
differentiable.

A more challenging test of distribution differentiability is
provided by the ensembles in Sets D and E, each designed
to have maximal overlap of Wilson loops on each of the
ensembles in the set, but different parameters in the fβ; m 0g
plane. Figure 8 shows histograms of the combinations of
Wilson loops corresponding to the dominant eigenvectors of
the loop correlation matrix for ensemble Sets D and E, while
Fig. 9 displays the Jensen-Shannon divergence between pairs
of ensembles in these sets.As the ensembles in each of SetsD

FIG. 6. Combinations of loops corresponding to the four largest eigenvectors of the loop correlation matrix for Grid A. Each color
denotes a different ensemble in Grid A.

FIG. 7. The Jensen-Shannon divergence, D JS, between pairs of
ensembles in Grid A, calculated over the three-dimensional
distributions defined by the three dominant eigenvectors of the
loop correlation matrix used for the PCA. D JS ¼ 1 implies
completely distinguishable distributions.

5On a given ensemble e, this three-dimensional probability
distribution is given by Peðsi; s2; s3Þ where

si ¼ vi · ðW1×1ðe; cÞ;W2×2ðe; cÞ;…W1×12ðe; cÞÞ;

and where vi is the ith eigenvector of the PCA. Additional tests
with the largest two or four eigenvectors gave qualitatively
similar results.

MACHINE LEARNING ACTION PARAMETERS IN LATTICE … PHYS. REV. D 97, 094506 (2018)
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ensembles in Grid A in Fig. 6. Clearly, the information
encoded in a collection of the simplest gauge-invariant
objects is sufficient to distinguish all but a few of the
ensembles in Grid A.
The Jensen-Shannon divergence [51,52] provides a mea-

sure of the overlap of probability distributions and can be

used to quantify the distinguishability of such distributions.
Given two probability distributions P and Q , defined over a
space X, the Jensen-Shannon divergence is given by

D JSðPk QÞ ¼ 1

2
D KLðPkMÞ þ 1

2
D KLðQ kMÞ; ð8Þ

FIG. 4. Contours show ln jWn×m j from evaluations on each ensemble in the two L=a ¼ 12 grids. The stars show the locations of the
ensembles from Grids A (blue) and B (orange).

FIG. 5. Eigenvalues en (left panel) and eigenvectors vn (right panel) of the loop correlation matrix for Grid A. The strength of the
contribution of each loop to each eigenvector is represented by the tone of the corresponding box in the right panel (i.e., darker ¼
larger contribution).

SHANAHAN, TREWARTHA, and DETMOLD PHYS. REV. D 97, 094506 (2018)

094506-6

Principal component analysis: find eigenvalues/vectors of matrix of cross-correlations 
of Wilson loops on training dataset



How does neural network regression perform compared 
with other approaches?

Consider very closely-spaced validation ensembles at new 
parameters:   not distinguishable to principal component analysis 
in loop space

Tests of network success
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Eigenvalues
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How does neural network regression perform compared 
with other approaches?

Consider very closely-spaced validation ensembles at new 
parameters:   distinguishable to trained neural network

Correct ordering of 
central values

Accurate regression 
differences even at very 
fine resolution

Tests of network success



Gauge field parameter regression
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Parameter related  
to lattice spacing

Neural net predictions 
on validation data sets

True parameter values

Confidence interval from  
ensemble of gauge fields

Predictions on  
new datasets
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SUCCESS!  
Accurate parameter regression 
and successful generalisation



PROOF OF PRINCIPLE 
Step towards fine lattice generation  

at reduced cost

Gauge field parameter regression

Generate one fine configuration
Find matching coarse action
HMC updates in coarse space
Refine and rethermalise 

1.    
2.
3.    
4.  

Guarantees  
correctness

Accurate matching 
minimises cost of 

updates in fine space

Shanahan, Trewartha, Detmold, PRD (2018) [1801.05784]



Multi-scale matching

Generative models to replace 
expensive HMC 
 

Learn parameters of a 
complicated pure-gauge action 
(cheap) to reproduce action with 
dynamical fermions (expensive)

Machine learning QCD

Accelerate gauge-field generation

New simulation strategies 
for lattice gauge theory
Michael G. Endres Lattice 2016

Multiscale Monte Carlo equilibration: Pure Yang-Mills theory
Michael G. Endres, Richard C. Brower, William Detmold, Kostas Orginos, Andrew V. Pochinsky

Multigrid  ideas for HMC
Very important and difficult problem
Major focus of US Exascale Software
project
(see Poster by Mike Endres)

PROOF OF  
PRINCIPLE

IN PROGRESS

Gurtej  
Kanwar

Michael  
Albergo



Optimise source operator 
construction        

             beat down excited         
             states

New analysis approaches to 
maximise signal-to-noise
           beat down noise

EXPONENTIAL  
IMPROVEMENTS

Machine learning QCD

Optimise extraction of physics from gauge fields
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Excited  
states

Signal Noise

Huge potential to enable first-principles nuclear physics studies
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