

Probabilistic modeling with tensor networks

John Terilla

https://arxiv.org/abs/1902.06888

Joint with James Stokes at Tunnel in NY

Quantum circuits are expressive. Do they provide a useful inductive bias for machine learning? We address this question in the context of unsupervised learning of probability distributions on sets of sequences.

Idea: View sequences as observations of a one dimension system of interacting quantum particles. Then find the state of that system.

Use exact-DMRG to find the state

Dive into details

Let X be a finite set and consider $H=\mathbb{C}^X$, the free vector space on X.

Notation: for any $x \in X$, we have $|x\rangle \in H$

The space H has an inner product making it into a Hilbert space:

$$\langle x,x'
angle = \delta_{x,x'}$$

Begin with a set X of sequences

$$X = A \times A \times \cdots \times A$$

and a probability distribution π on X.

The free Hilbert space $H=\mathbb{C}^X$ decomposes as a tensor product

$$H \simeq V \otimes V \otimes \cdots \otimes V$$

where $V=\mathbb{C}^A$ is the free Hilbert space on A.

Notation:
$$\ket{a_1a_2\cdots a_N}=\ket{a_1}\otimes\ket{a_2}\otimes\cdots\otimes\ket{a_N}$$

The state $\psi_* = \sum_{x \in X} \sqrt{\pi(x)} |x
angle$ encodes the probability

distribution π via the Born rule $\pi(x) = \langle x | P_{\psi_*} | x
angle$

Problem formulation

Given a set of samples drawn from π

$$egin{aligned} x^1 &= a_1^1 a_2^1 \cdots a_N^1 \ x^2 &= a_1^2 a_2^2 \cdots a_N^2 \ &dots \ x^n &= a_1^n a_2^n \cdots a_N^n \end{aligned}$$

and a model hypothesis class $\mathcal{M} \subset H$,

find the state $\psi \in \mathcal{M}$ closest to ψ_* .

Method of attack

We have the empirical distribution $\widehat{\pi}$ defined by the data x^1, \dots, x^n and the corresponding empirical state

$$\widehat{\psi}:=\sum_{x\in X}\sqrt{\widehat{\pi}(x)}|x
angle.$$

Use exact DMRG to define a sequence

$$\psi_0,\psi_1,\psi_2,\dots$$

in ${\mathcal M}$ that get closer to $\widehat{\psi}$.

The model class M

The model hypothesis class \mathcal{M} consists of matrix product states (MPS) with a fixed bond space W.

The model class M

Tensor networks represent states that can be prepared by shallow quantum circuits.

Allow for efficient representations of vectors in very high dimensional spaces

Provide access to poly-logarithmic algorithms for certain kinds of linear algebra operations

Exact DMRG as a sequence of inductively defined effective problems

Base step: Choose an MPS state ψ_0

Inductive step: Given an MPS state ψ_t , define an isometric embedding of an "effective" Hilbert space

$$lpha_t: H_{ ext{eff}} o H$$
 .

Define ψ_{t+1} to be the state in $H_{t+1}:=lpha_t(H_{\mathrm{eff}})$ closest to $\widehat{\psi}$.

The state in $\alpha(H_{\rm eff})$ that is closest to $\widehat{\psi}$ can be computed directly using orthogonal projection onto the subspace $\alpha(H_{\rm eff})$

$$egin{aligned} \operatorname{Proj}(\widehat{\psi}) &= lpha lpha^* \left(\widehat{\psi}
ight) \ &= lpha lpha^* \left(\sum_{x \in X} \sqrt{\widehat{\pi}(x)} \ket{x}
ight) \ &= lpha \left(\sum_{x \in X} \sqrt{\widehat{\pi}(x)} lpha^* (\ket{x})
ight). \end{aligned}$$

To define the effective problem, fix a site and put the MPS into mixed canonical gauge relative to that site.

The effective Hilbert space is $W \otimes V \otimes W$ and the isometric embedding

$$lpha:W\otimes V\otimes W o V^{\otimes N}$$

is defined by

The map α is an isometry.

Proof:

Define a map $\alpha^*:V^{\otimes N} \to W \otimes V \otimes W$ by

The map α^* is the adjoint of α .

Proof:

The state in $\alpha(H_{\rm eff})$ that is closest to $\widehat{\psi}$ can be computed directly using orthogonal projection onto the subspace $\alpha(H_{\rm eff})$

$$egin{aligned} \operatorname{Proj}(\widehat{\psi}) &= lpha lpha^* \left(\widehat{\psi}
ight) \ &= lpha lpha^* \left(\sum_{x \in X} \sqrt{\widehat{\pi}(x)} \ket{x}
ight) \ &= lpha \left(\sum_{x \in X} \sqrt{\widehat{\pi}(x)} lpha^* (\ket{x})
ight). \end{aligned}$$

$$\sum_{i=1}^{n} c_i \alpha^* \left(|x^i\rangle \right) = -$$

Parity Dataset P_N consists of bitstrings of length N with an even number of 1 bits

$$1100000101 \in P_{10}$$

$$1000000101 \not\in P_{10}$$

Consider the probability distribution on bitstrings uniformly concentrated on P_N

$$\pi(11000000101) = \frac{1}{512}$$

$$\pi(1000000101) = 0$$

Learns the uniform distribution on P₂₀ with high accuracy

Used 2% of the data set to train

Trains quickly

Resulting model is small (336 parameters)

Efficient, perfect sampling

Conclusions

The tensor network ansatz provides a useful inductive bias for unsupervised generative learning of datasets of interest

Other experimental results: DIV7

These methods could lead to interesting generative language models