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Quantum circuits are expressive. 
Do they provide a useful inductive 
bias for machine learning?



We address this question in the 
context of unsupervised learning 
of probability distributions on sets 
of sequences.



Idea:  View sequences as 
observations of a one dimension 
system of interacting quantum 
particles.  Then find the state of 
that system.



Use exact-DMRG to 
find the state
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Dive into details



Let  be a finite set and consider , the free 
vector space on . 

Notation: for any , we have 

The space  has an inner product making it into a 
Hilbert space: 



Begin with a set  of sequences 

 

and a probability distribution  on .

The free Hilbert space  decomposes as a 
tensor product 

where  is the free Hilbert space on .

Notation: 



The state  encodes the probability 

distribution  via the Born rule 



Problem formulation
Given a set of samples drawn from 

and a model hypothesis class ,

find the state  closest to 



Method of attack

We have the empirical distribution  defined by the 
data  and the corresponding empirical 
state 

 

Use exact DMRG to define a sequence 

 

in  that get closer to .



The model class 

The model hypothesis class  consists of matrix 
product states (MPS) with a fixed bond space .

 =



The model class 

The model hypothesis class  consists of matrix 
product states (MPS) with a fixed bond space .Tensor networks represent states that can be prepared 
by shallow quantum circuits. 

Allow for efficient representations of vectors in very 
high dimensional spaces 

Provide access to poly-logarithmic algorithms for 
certain kinds of linear algebra operations



Exact DMRG as a sequence 
of inductively defined 
effective problems



Base step: Choose an MPS state 

Inductive step: Given an MPS state , define an 
isometric embedding of an "effective" Hilbert 
space

.

Define  to be the state in  
closest to .



The state in  that is closest to  can be 
computed directly using orthogonal projection onto 
the subspace 
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To define the effective problem, fix a site and put 
the MPS into mixed canonical gauge relative to 
that site.



The effective Hilbert space is  and the 
isometric embedding

is defined by

↵



The map  is an isometry.

Proof:

h↵(�),↵(�0)i = = = h�,�0i.



Define a map  by

↵⇤



The map  is the adjoint of .

Proof:

h⌘,↵(�)i = = h↵⇤(⌘),�i



The state in  that is closest to  can be 
computed directly using orthogonal projection onto 
the subspace 
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Experimental Results



1100000101 ∈ P10

1000000101 ∉ P10

Parity Dataset PN consists of 
bitstrings of length N with an even 
number of 1 bits

Experimental Results



Consider the probability distribution on 
bitstrings uniformly concentrated on PN

π(1100000101) =
1

512
π(1000000101) = 0



Experimental Results
Learns the uniform distribution on P20 with high 
accuracy 

Used 2% of the data set to train 

Trains quickly 

Resulting model is small (336 parameters) 

Efficient, perfect sampling



Experimental Results



Experimental Results



Conclusions
The tensor network ansatz provides a useful inductive 
bias for unsupervised generative learning of datasets 
of interest 

Other experimental results:  DIV7 

These methods could lead to interesting generative 
language models 




