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Physics works with data science techniques:
1707.00655 with Jon Carifio, Dima Krioukov, and Brent Nelson

1711.06685 with Jon Carifio, Will Cunningham, Dima Krioukov, Cody Long, and Brent Nelson
1902.xxxxx with Nelson, Ruehle

1903.xxxxx with Long, Nelson, Salinas
19xx.xxxxx with Long, Ruehle, Tian

A large ensemble and universality: Computational Complexity and Undecidability:
1706.02299 with Cody Long and Ben Sung 1809.08279 with Ruehle
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Greg Yang, Microsoft Research
Date: April 25, 2019 - April 26, 2019 Jim Halverson, Northeastern University
Location: Redmond, Washington, USA Sven Krippendorf, LMU Munich
Venue: Microsoft Research Building 99/1919 Fabian Ruehle, CERN’ Oxford Unlver5|ty
Redmond, Washington, USA Rak-Kyeong Seong, Tsinghua University

Gary Shiu, University of Wisconsin

About Agenda Microsoft Advisers

Chris Bishop, Microsoft Research

The goal of Physics N ML (read ‘Physics Meets ML') is to bring together researchers from Jennifer Chayes, Microsoft Research
machine learning and physics to learn from each other and push research forward together. In

this inaugural edition, we will especially highlight some amazing progress made in string theory

with machine learning and in the understanding of deep learning from a physical Paul Smolensky, Microsoft Research
angle. Nevertheless, we invite a cast with wide ranging expertise in order to spark new

Michael Freedman, Microsoft Research

ideas. Plenary sessions from experts in each field and shorter specialized talks will introduce
existing research. We will hold moderated discussions and breakout groups in which participants
can identify problems and hopefully begin new collaborations in both directions. For example,
physical insights can motivate advanced algorithms in machine learning, and analysis of
geometric and topological datasets with machine learning can yield critical new insights in
fundamental physics.

Application:

Please contact an organizing member if you wish to participate in this workshop. https://www.microsoftevents.com/profile/form/index.cfm?PKformID=0x5969440abcd
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"Machine Learning" in hep-th Abstracts

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

25 papers, more like O(30-40) with more inclusive terms.
O(10-15) works in progress, presented @ workshops.



Strings + ML @ 10,000 ft

Meetings: Scientific Directions:
Northeastern, Nov 2017 e string vacua / landscape
LMU Munich, March 2018 * associated applications in
TSIMF Sanya, June 2018 particle physics + cosmology.
ICTP Trieste, Dec 2018 e algebraic geometry + math
Microsoft Res, Apri 2019 e holography + QCD
others in the works . . . e SUSY gauge theory
Techniques use so far: Selected Literature:
supervised Iearning Evolving neural networks with genetic
(Simple and various NNS) algorithms to study the String Landscape
GANS Fabian Ruehle
Reinforcement learning Deep Learning and Holographic QCD
Network Science Koji Hashimoto, Sotaro Sugishita, Akinori Tanaka, Akio Tomiya
Autoencoders

_ _ Machine Learning of Calabi-Yau Volumes
Genetlc algorlthms Daniel Krefl, Rak-Kyeong Seong

others | probably forgot . . .

(apologies to many friends with excellent works not listed here,
| wanted to keep the list short and across different areas!)



The problem:
Many questions.
Many (theoretical) data sets.

Today: fix one, address humerous
physical questions In It.



A fun maximally
conservative estimate:

> 10742 TB to store.

> 10684 Tyniv tO process.



Our big physics question:
Is particle physics and cosmology
described by string theory?

Our small physics question:
how do string ensembles change
our particle-cosmology perspective
relative to the bottom-up?

Upshot: landscape —> complex system



Outline

String landscape 101.  (sketch physics, size, complexity).

Today’s data: ensemble of topologically distinct
transition-connected geometries with physics universality.

ML application 1: Q: Where is something like the SM?
simple techniques —> conjecture —> gauge sector theorem.

ML application 2: Q: Where does this data set “fit”?
understanding control by probing weak coupling with RL.

ML application 3: Q: Why are there SM particles?
early universe reheating and simplifications from SL.



Strings at Low Energies

Theory of quantum gravity

Extra dimensions:
- have structure (e.g. Calabi-Yau)

- can have things in them
(e.g. branes, fluxes)

There are solutions, each with EFT

But many solutions!
The string landscape




Landscape Size

Early result: O(10%00) weakly coupled IIB flux vacua
[Ashok, Douglas] [Denef, Douglas]

Update: O(10272.000) F-theory flux vacua. (one geometry)
[Taylor, Wang]

Geometries exact lower bound: 1075 (today’s data)
[JH, Long, Sung]

Believed to be finite. Some examples in corners:

- consistency + SUSY in brane systems:
[Douglas, Taylor] [Cvetic, JH, Klevers, Song]

- 6d F-theory elliptic fibrations: [Gross], [Grassi]

- 4d F-theory elliptic fibrations: [DiCerbo, Svaldi]



Landscape Complexity

Seminal work: small cosmological constants are NP-complete by reduction
from subset sum. [Denef, Douglas]

Undecidability: tremendous number of diophantine problems, both from

decision problems and index theorems. Patchy landscape!
[Cvetic, JH, Garcia-Etxebarria]

Cosmological dynamics: complexity effects on vacuum selection.
[Denef, Douglas, Greene, Zukowski]

Fast optimization for toy (ADK ~ knapsack) cosmological constants:
[Bao, Bousso, Jordan, Lackey]

Finding vacua: computing scalar potential in strings and finding minima in
associated EFT are both hard. [JH, Ruehle]



Today’s Data

e topologically distinct geoms (6-manifolds)
e all connected by topological transitions.

e have some universal physical features

[JH, Long, Sung] x 2, 1706 and 1709



The Mathematics

4D F-theory: 3-fld B, gauge structure det’d by B topology, called

“non—HiggsabIe cluster.” Some selective pr_ogress_: Anderson_, JH,
Heckman, Grassi, Morrison, Rudelius,

Shaneson, Taylor, Wang, Vafa.
Starting point: B a weak Fano toric threefold, encoded in a certain

triangulation (fine regular star) of a 3d reflexive polytope.

Topological transitions: systematically perform sequences of “toric
blowups” — topological surgery along two-spheres, points.

Sequences are bounded: if all singularities are “canonical”, geom. is

at finite distance from bulk of field space in the Welil-Petersson metric.
Alg. Geom: [Hayakawa] [Wang] in F-theory: [Morrison]

Classification: there are 82 (41,873,645) sequences over curves
(points) that satisfy a sufficient condition for canonical singularities.

Ensemble: all ways of performing these sequences of blowups.
from an initial, fixed, triangulated polytope.



Fancy lingo = ?
Job security!

Reality: each geometry is
specified by a constrained
set of sets of vectors in Z°



The Simple Picture

* Polytope: Triangulation: (codim 1 faces)

Fact: any FRS triangulation of this has 108 edges, 72 faces.

* Rep seq. of blowups: (topological transitions, project into board)

13231 A

e Ensemble Size: (put the widgets on the triangulation)
82198 % 41873645 = 2.96 x 10™°




The Integer

exact lower bound on topologically distinct F-theory geometries.

296231521306658847673529878342496866080378021782076722241462425150065298508845621155
695644076004524635389132997/14609/06/7111728163388031396056782083347614866566976655879
02198401279376915721377916981675332533597/8325856186523598065404800375507248464342388
511047235006655822119955724586948796896518847577026036417026840946433790956016724443
83055842508595943837154889/609540032670520282917998350399793115958231423494399655849
101565013413100994870230661418306662241/33/727360211923208425845972788270516755913617
371792570199269731190754783864008989335957900232620795965279395190240666076073359738
714472109475716934497800719015826299673405211214139176513510727323709162299991669746
741171716096000000000000000000000000000000000000000000000000000000000000000000000000

of 4319 3d reflexive polytopes,
there’s one other polytope that yields this same number of geometries.
they dominate the ensembles from other polytopes
by over 60 orders of magnitude.



Analytic Physics Universality

related ensemble of [Taylor, Wang] has similar results

Universality from algorithm: (nice when this possible)
geometric ansatz with computable high prob. —> physics property

for any geom., easy to compute geometric 7-brane structure at generic CS

Universality of Non-Higgsable Seven-branes:
P(NHC in Sa¢) >1-1.01x 107"

P(NHC in Spg) >1-.338x 107"
Universality of Large Gauge Sectors: prob >99.9995 % rk((G) > 160

GZEéoxFlll8xU9xF£1H2xG£{3xA{I4 U € {GQ,F4,E6}
T'k(G) > 160+4H2+2H3+H4

Cosmology Suggestion: Dark Glueballs?

Universality of Strong Coupling: Nsen <30 % 10739
NTotal -



Better Universality from Sampling

from 200 random samples
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i  F
vl L = < “ o :S o

e avg # axion-like particles (ALPs): 1883 +- 29. (Experiments!)

e avg # ALPS that are gauge axions = avg # of gauge factors:
762 +- 11

e avg rk of gauge group: 1609 +- 17.



“Typical” Example

[Taylor, Wang]
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Context: compared to bottom-up expectations, a very complicated gauge theory with rich
cosmological possibilities and concerns. (e.g. inflation, reheating, dark matter)



ML Application One:

Q: Where is something like the SM?

Simple Supervised Learning
—> Generate Conjecture
—> Rigorous Theorem

1707.00655 with Carifio, Krioukov, Nelson



Interpretability + Theorems

e any GUTs or SM-like features? ]
prob(E6 on special manifold) ~ 1/2000 oo B
0.9921 o o -
* prepared training set, used simple 09901
supervised ML to learn when EG6. 0.8
(see right) -
_. - 1
0.984 1 J_
® SOome Of the ML mOdels Showed LR LDA KNN CART SVM
“IinChpin variable” that determined LR LDA KNN CART SVM
Whether or not E6 Conjecture| 50/50 Validation Set .994 .994  .982 987 989

Unenriched Set 983 988 981 988 .983.

(] Reflne COnJeCtu re, ge‘t theorem. Theorem: Suppose that with high probability the group G on vg, is G €

{Es, E7, Eg} and that Eg may only arise with m = (—2,0,0). Given these as-
sumptions, there are three cases that determine whether or not GG is Ejg.

a) If amaz > 5, M cannot exist in Ay and the group on vg, is above Ejg.

e Key idea: simple ML to get rigorous ) |
] . . b) Consider a,,q, = 4. Let v; = a;vg, + bjve + ¢;vs be a leaf built above vg,,
resul‘ts V|a ConJeC‘tu re generatlon . and B = m - vy and C = m -v3. Then G is Eg if and only if (B,b;) > 0 or
B} ) . (C,¢;) > 0 Vi. Depending on the case, G may or may not be Eg.
Simpler algs —> interpretability.

c) If amar <3, m € Ay and the group is Fg.



ML Application Two:
Q: Where does this data set “fit”?

Relative to weak coupling landscape.

Intelligent exploration of weak coupling limits
with asynchronous advantage actor-critic.

19xx with Long, Ruehle, Tian



The String Context

15 years ago: weakly coupled IIB.
Now (and slightly after then), F-theory, how much broader?

Sharp Q:
how likely is existence of F —> |IB weak coupling limit?

Analytically proved that P(weak coupling limit) < 10-3°1,

But likely way off, and also non-trivial lower bound?
Also, what happens at the boundary, physically speaking?



“Connected” Anomaly Detection

Common Situation:

 Special data and a strategy?

Starting polytope (the “origin”)
has WCL, i.e. has anomaly.

e |n general: extremely rare,
P(WCL) < 107!
but connected to origin.

e Suggests moving out and
penalizing when “out of
bounds”. (i.e. no WCL)




Reinforcement Learning

supervised ML predicts, RL explores / searches

an agent interacts in an environment. in strings: see
Halverson, Nelson, Ruehle

_ . to appear 1902.
It perceives a state from state space. O(2000) improvement.

Its policy picks and executes an action, given the state.
agent arrives in new state, receives a reward.
succesive rewards accumulate into return.

return may penalize future rewards via discount factor.

policy optimized to maximize reward, i.e. agent learns how to act!



AlphaGo Zero

“Mastering the game of Go without human knowledge.”
Silver et al. (Google DeepMind), Nature Oct. 2017.

A long-standing goal of artificial intelligence is an algorithm that learns, tabula
rasa, superhuman proficiency in challenging domains. Recently, AlphaGo became
the first program to defeat a world champion in the game of Go. The tree search in
AlphaGo evaluated positions and selected moves using deep neural networks. These
neural networks were trained by supervised learning from human expert moves, and by
reinforcement learning from self-play. Here we introduce an algorithm based solely on
reinforcement learning, without human data, guidance or domain knowledge
beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to
predict AlphaGo’s own move selections and also the winner of AlphaGo’s games. This
neural network improves the strength of the tree search, resulting in higher quality move
selection and stronger self-play in the next iteration. Starting tabula rasa, our new
program AlphaGo Zero achieved superhuman performance, winning 100-0 against
the previously published, champion-defeating AlphaGo.

Fact: Go has 10172 states, a “big” number, but for the task of playing
excellently, superhuman progress achieved tabula rasa.



Implementation

model-free RL: want algorithms to work well regardless of environ.

three modules:

- Open Al defines what an environ is and how to interface.
- ChainerRL provides RL algorithms and NN architecture.
- Physicists provide: the environment. Rather simple!

Environment L \ "ﬁ Chainer RL

4+ action space ! : , 4+ method
+ observation (state) [ o | (ASC,DCN,...)
space | 4 ¢ NN architecture
: : (FF, LSTM,...)

algorithm: asynchronous advantage actor-critic (A3C) [Minh et al 20106]
(parallel CPU, not GPU)



Asynchronous Advantage
Actor-Critic (A3C)

[Mnih et al, DeepMind 2016]

“Our parallel reinforcement learning paradigm also offers practical benefits. Whereas previous
approaches to deep reinforcement learning rely heavily on specialized hardware such as GPUs (Mnih
et al.,, 2015, van Hasselt et al., 2015; Schaul et al., 2015) or massively distributed architectures (Nair
et al., 2015), our experiments run on a single machine with a standard multi-core CPU. \When
applied to a variety of Atari 2600 domains, on many games asynchronous reinforcement learning
achieves better results, in far less time than previous GPU-based algorithms, using far less
resource than massively distributed approached” - Mnih et al, Asynchronous Methods for Deep RL

Actor-Critic Methods: NN for determining both policy (actor) and
value (critic).

Asynchronous: many worker bees explore, report back to king
(critic) and queen (actor) bee.

l.e. use communal knowledge.
Advantage: policy update depends on A(s,a) = O(s,a) — V(s)

> some 2016 GPU algs. Simple to run. Learns strategy
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0

2

Breakout
DQN
1-step Q
1-step SARSA
n-step Q
A3C

4 6 8 10 12 14
Training time (hours)

re



The Game

why might this work? WCL-possible geometries connected
subset of our ensemble, can start at FRST of 3d refl. poly.

No Sen limit!

The Game: s
Sen may be possible |

move: seq. of transitions | N 4 /«

goal: stay in bounds (WCL) ’ -

reward: 100 if in bounds .

game over: out of bounds |

(ho WCL)

want to show some initial results.
(oresented in time series of results, to emphasize fun)



For Comparison: Random Walk

200

400

ores via random walk
w
o
(@)

200
100
0 0 200000 400000 600000 800000 1000000
steps

note scale: random walk takes 2-3 steps before No WCL



First Try: It Learns Quickly!

4500
4000

3500

3000

2500

mean

2000
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e Random walk line

0 1 2 3 4 )
steps ler

zoom in: decrease training time, increase eval interval



Second Try: See More Asymptote
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g . @ ° N
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0 200000 400000 600000 800000 1000000
steps

much better, but can we tweak so it does better?



Third Try: Different Policy NN

Try LSTM instead of feedforward.

X N
e o o o @w®
4000 pr— :.
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o
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o
c
(18]
Q
: 2000
o
00000
Random walk line
0
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steps

new feature: four sharp plateaus.
this is punctuated equilibrium.



Fourth Try: Don’t Give Up

train a little longer, maybe it’s got more juice in It.

2000

”
‘0
4000 ‘.
a o ® % €« o
O
3000 °
= O
o
- P
2000
O
O
1000 o
O
r Random walk line
0

000 025 050 075 100 125 150 1.75 200
steps 1e7

work work work, keep on training.



Fifth Try: The Best Yet

and there’s clearly still room to grow.

10000
8000

6000

mean

4000

2000

Random walk line

0.0 0.2 0.4 0.6 0.8 1.0 1.2
steps 1e8

punchline: found deep weakly coupled crevice. Understand!



Upshot

e The 10,800 score solution sheds light on other WCL
solutions. Gives lower bound below.

* 1) weak coupling very rare:
1030 < Nweak < 1080 in 10755 ensemble

2) typical weakly coupled model has at least 30 SO(8)
seven-brane stacks that can typically be Higgsed in CS.

e Use explorer to generate WCL-NOWCL training pairs along
largest known section of the boundary, study physics.



ML Application Three:

Q: Why are there SM particles?

Answer: post-inflationary reheating, between
“the end of the beginning” and “radiation.”

Here: reheating in large ensemble.

NN —> surprising local understanding

1903 with Long, Nelson, Salinas



Reheating N Sectors

Gauge
Sector 1

Gauge
Sector 2

Constraint: ¢ must dump energy
preferentially into some sectors,

not equally reheating all sectors. Gauge

Sector N

Or else: disagree with observations,
e.g. too much dark glueball DM.



Axion-like Particle Effective Theory

1 a b 1 a1
L = _§5ab(@¢ )(3¢ ) — Z;Fa/\*Fa—ZCZ¢Fa/\Fa

84

« Q: if axion inflaton couples to a gauge field,
how much does it necessarily couple to other gauge fields?

» Order zero question: take @inf to point along a single gauge group G .
How much does ¢;,r couple to G,,7

Lint = —Cinf QintF1 N F1 — (Co@int + d50" ) Fo A Fo —

C;
* Physics goal: compute —— . String EFT machine + topology does this.
Cinf



Decision Variables

Rather complicated map from geometry to reheat ratio.
Q: is it determined in terms of simpler variables?

Trained NN (Pytorch, feedforward, few layers)

on “tree heights”, gauge groups, graph distance various
volumes including overall volume and a funny ratio we’ll see
next slide, and more.

Got great accuracy, so naively started column dropping.

Found only two variables really matter!



Local Picture

Co  Tio vol(D;ND,) y vol(D;)
C; Liq N VO(DZ M Dz) V():.(DO)

@ - other gauge group reheated

® =inflaton gauge group

Result: for axion-like particles in gauge
direction, couplings only occur for
nearest neighbors, rest are very small.

Non-local physics is surprisingly negligible.



Reheating Distributions
Gauge Directions
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Reheating Distributions:
Random Directions
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Thank you!

Holographic QCD
and g-qbar potential.

[Hashimoto, Sugishita, Tanaka, Tomiya]
1809.10536

Vacuum selection in toy

multiverse with network science.
[Carifio, Cunningham, JH, Krioukov, Long,
Nelson] 1711.06685

Islands of SMs with

autoencoders
[Mutter, Parr, Vaudrevange] 1811.05993

Small cosmological constants

with RL and complexity.
[JH, Long, Ruehle] in progress.

Other string / HET topics investigated
with ML, because | haven’t done my
friends’ work justice.

Persistent homology & vacua
[Cole, Shiu] 1812.06960

Line bundle cohomology

[Ruehle] 1706.07024
[Klaewer, Schlechter] 1809.02547

Branes w/ Branes: RL for

consistency + particle optimization
[JH, Nelson, Ruehle], in progress

Upper bound for certain CY3s
[Altman, Carifio, JH, Nelson]

Model building with GANs
[Erbin, Krippendorf]

and many more . ..



