Exact Information Bottlenecks
for Arbitrary Distributions with
Echo Noise

¢/, x Rob Brekelmans, Daniel Moyer, USCUniversi’gyof _
) ) ) Greg Ver Steeg, Aram Galstyan Southern California
’ Information Sciences Institute

Feb. 11, 2019
Crossroads of Physics & ML




Information bottleneck / rate-distortion

e

Y Lossy
compression

Given observed distribution g(X=x,T=t), for inputs X and task variable T.
The Lagrangian form:
27?7

min Distortion(Z, T) + x@
a(z/x) -

e.g. prediction Mutual information /
error compression rate

Only for toy cases: low-d categorical variables and Gaussian noise/inputs



Outline

* Rate bounds: mean-field variational bounds for information rate
* Echo: a noisy channel with exact rate ))>

* Application: variational auto-encoders as information bottlenecks
* Results: better likelihood and rate-distortion trade-offs

* Controversy: Do deep nets compress? Does this explain generalization?



Mean-field variational bound for
information rate



Information in a noisy channel

Noisy channel
Input X > 7,

distribution ¢( ¥(3) x) ¢(z|x) q(z,x) = q(z|x)q(x)

— I(Z;X)=H((Z)—- H(Z|X)
information = Dk, [q(z]x)||q(2)]
B q(z|x)

O




Problem

§(z) = / dx q(Z|X)Q(T)
N

High-d Could be complex
integral (images, audio,
gene expression...)



Mean-field variational approximation, p(z)

q(z|x)

q(z)

Mutual 1(Z;X) =E, |log

information

p(Z) _ Hp(zz) (A typical mean-field

approximation)



Mean-field example for Gaussian noise channel
z=mx+ss &~N(0,1)

) = N(z, s°)

An optimal variational distribution, p, would be:p(z;) = N(E(x;), Var(x;) + s°)

1(Z: X) < Z;%log (1 : Vazé:&))

Only tight if the input is Gaussian, and each channel is independent

q(%




Echo noise

By choosing a more flexible noise channel, we can exactly specify information rates
for arbitrary inputs
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Fcho noise: make the noise look like the 1)
signal

Why?
* For correlated Gaussian noise, optimal signal is correlated in same basis
* Key property for analytic mutual information under arbitrary input

How do we make the noise look like the signal?
z = f(x) + s¢
= f(x), xg(x)
fx) +sf(x), x,x"~q(x)

z —
d
£ ?é 7 (R.V.s not equal in distribution)



Echo noise: make the noise look like the %))
signal

How do we make the noise look like the signal?

2 = f(x) + se

e = f(xD) +sf(xM) + 52 f(x®) ., xOg(x)

2= 16 +5(F&O) + /6 4 27 D)
Multiply out and re-label iid samples.... clyz

these are the same (in distribution)!



For vectors, with attenuation depending on X

/4vector
z= f(x)+ S(x)e /\
Attenuation matrix is a function of x g i Z

- = 70 + S0 £x!) + 56 (7662) + S0 .

E =
14

o'® 14 N
(H S(XW)) fxh,  x"g(x)

0 \¢'=1



Example: a non-Gaussian input distribution

A uniform distribution in R%2 with a shape that strikes fear into the heart
of villains and Gaussians




Echo example, z=x+s g, with s=1/2

m m+m+¢»+m++

1 q(€)
8X(3) 4

e =x9 4 X(l) + X(z) -

m S

1



Sampling + + D+

q(x)

* The noise is data-driven. To sample noise, we just
need iid samples from the input distribution

* For this sampling procedure to converge, we need
s < 1 (or spectral radius of S(x) < 1 in vector case)

* We can sample noise to within machine precision
by controlling number of terms in the series



* We can sample noise to within machine precision
by controlling number of terms in the series

* To get HIGH noise, or LOW mutual information, we
need MANY terms in the series

e=> s'f(x9)



Information in Echo Noise Channel

* Because they are the same in distribution, H

differential entropy, H, matches:

H(Z) = H(E)

q(€)

 We don’t know H()... but we don’t care, we are
trying to get the mutual information,

1(Z;X) = H(Z) - H(Z|X) H
(z)

q




Sample-dependent noise scaling

z = f(x)+ 5(x)e ‘ H/f'H
H(Z|X) = H(f(X)+S(X)E|X)  “me=nie+r
— ‘CXH(f(X) S( )g ‘ X — X) Translation invariance
‘ HEM

H(s€)=H(E) + logs

Scale property



Mutual information for the echo noise channel

+ I log ‘ det S(X)‘ Sample-dependent noise scaling

Self-similar noise (Echo)

I(Z;X)=H((Z)—- H(Z|X) Mutual information decomposed

[(Z: X) = —Elog | det S(x)|

+ =0




Mutual information for the echo noise channel

* Works for any input (sampling noise requires samples of input)
* Set S(x) = s to get a simple, exact M| = -log s

* But S(x) is controllable (e.g. specify with a neural net) —a powerful
way to get more flexible noise models

[(Z: X) = —Elog | det S(x)|

+ =0




Echo versus loose bounds

Echo >-o-g
Noise = H
1(Z;X) = 3 bits

Set noise S(X) = § = 2_3

_|_

1(x) 1(2]x) /(2

Input distribution Noisy channel Encoder distribution



Application:
Variational Auto-Encoder (VAE) is
an Information Bottleneck

See nice discussion with connections to statistical physics: arXiv:1803.08823



VAE perspective p(z)

Decoder Z

(generative lp(X|Z)
* Encoder and decoder parametrized by model) X
neural nets
* What’s a good objective? Make the
data likely under the generative model
* Problematic: Encoder 7

p(x) = /dz p(x|z)p(z) (variational ‘ q(z|x)

approximation Xq(X)

to pz[x) Observed
distribution



Likelihood of data under generative model

IV

L log pe(x) — Dk r|qe(2]%)||pe(z]x))
Lq log pe(x|z) — Dk r|qs(2[x)||p(2))]

Distortion /
reconstruction loss

“jq lOg Do (X)

A

2977

We already saw this term. It’sthe variational, mean-field bound for the
information in the noisy effannel, q.

1,(Z7X) < Dkr |q(z]x)||p(z)]

The best choice we can make is p(z) = g(z), leading to the tightest
bound on likelihood



Echo optimization problem
L(x) log pe(x) > Ey, [log po(x|z)] — I, (X; Z)

max Ky, [log po(x|z)] — Slq, (X; 2)

Distortion / Compression
reconstruction loss

* Generalized info bottleneck, add a tunable trade-off (aka “beta-VAE”)
e Echo version: z = f(x) + echo noise. Then:

I[(Z; X)=—Elog|det S(x)]

e Reconstruction term as usual for VAE




Results



Negative Log-Likelihood (lower is better)

_ Nats 120
Binary MNIST
80
60
For reference:
Pure static = 543 nats/image 40
Constant = 0 nats/image 20
Optimal would be true
entropy of data (unknown) 0

Echo VAE InfoVAE Flow
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Negative Log-Likelihood (lower is better)

Nats 140
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Negative Log-Likelihood (lower is better)

Nats 300
Fashion MNIST
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Rate-Distortion — binary MNIST @4 & & T & 2
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Reconstruction example — Fashion MNIST

Data Sample

Echo

VAE

Low rate

B=1.0
R=5.4 D=205.8

B=2.0
R=9.5 D=230.0

> | PSTEY P

High rate

B =0.05
R=23.1 D=202.5

B=0.3
R=30.0 D=212.9



Compression / Generalization
Controversy



Opening the black box of Deep Neural Networks
via Information

Ravid Schwartz-Ziv RAVID.ZIV@MAIL. HUJLAC.IL
Edmond and Lilly Safra Center for Brain Sciences

The Hebrew University of Jerusalem

Jerusalem, 91904, Israel

Naftali Tishby" TISHBY @CS, HUJLAC.IL
School of Engineering and Computer Science

and Edmond and Lilly Safra Center for Brain Sciences

The Hebrew University of Jerusalem

Jerusalem, 91904, Israel

* Learning exhibits a “fitting
Alpirac “compression phase”

Despite their great success, there is still no comprehensive theoretical understanding of learning

with Deep Neural Networks (DNNs) or thewr inner organization. Previous work [Tishby and Za-

slavsky (2015)] proposed to analyze DNNSs in the Information Plane; ve., the plane of the Mutual

Information values that each layer preserves on the input and output variables. They suggested that

the goal of the network is to optimize the Information Bottleneck (1B) tradeof! between compres- ® CO m ress i O n I ea d S to OOd

ston and prediction, successively, for each layer. p g
In this work we follow up on this idea and demonstrate the effectiveness of the Information- . o

Plane visualization of DNNs. Our main results are: (1) most of the training epochs in standard ge n e ra | |Zat|0 n fo r d ee p n ets

DL are spent on compression of the mput to efficient representation and not on fitting the training

labels. (11) The representation compression phase begins when the training errors becomes small

and the Stochastic Gradient Decent (SGD) epochs change from a fast drift to smaller training error

nto a stochastic relaxation, or random diffusion, constrained by the training error value, (ii1) The

converged layers lie on or very close 1o the Information Bottleneck (IB) theoretical bound, and the

maps from the input to any hidden layer and from this hidden layer to the output satisfy the IB

self-consistent equations, This generalization through noise mechanism is unique to Deep Neural

Networks and absent in one layer networks, (iv) The training time is dramatically reduced when

adding more hidden layers. Thus the main advantage of the hidden layers is computational, This

can be explained by the reduced relaxation time, as this it scales super-lincarly (exponentially for

simple diffusion) with the information compression from the previous layer. (v) As we expect

crtical slowing down of the stochastic relaxation near phase transitions on the IB curve, we expect

the hidden layers to converge to such critical puinl,sF



ON THE INFORMATION BOTTLENECK
THEORY OF DEEP LEARNING

Andrew M. Saxe, Yamini Bansal, Joel Dapello, Madhu Advani
Harvard University

(asaxe,madvani}@fas.harvard.edu, {ybansal,dapello}@g.harvard.edu
Artemy Kolchinsky, Brendan D. Tracey David D. Cox

Santa Fe Institute Harvard University

{artemyk, tracey.brendan}@gmail.com MIT-IBM Watson Al Lab

davidcox@fas.harvard.edu

david.d.cox@ibm.com Cou nter‘pOint: Observed
— compression is an artifact of the
The practical successes of deep neural networks have not been matched by theoret- (d iSC rEtiZEd ) i nfo m atio N

ical progress that satisfyingly explains their behavior. In this work, we study the

information bottleneck (IB) theory of deep learning, which makes three specific ESti m ato rs Wit h d iffe re nt

claims: first, that deep networks undergo two distinct phases consisting of an .

initial fitting phase and a subsequent compression phase; second, that the compres- . . . . .
sion phase is causally related to the excellent generalization performance of deep NOoN I INea r|t |les d |ffe re nt be h aVvior
networks; and third, that the compression phase occurs due to the diffusion-like ’

behavior of stochastic gradient descent. Here we show that none of these claims

hold true in the general case. Through a combination of analytical results and eme rgeS.

simulation, we demonstrate that the information plane trajectory is predominantly

a function of the neural nonlinearity employed: double-sided saturating nonlineari-

ties like tanh yield a compression phase as neural activations enter the saturation

regime, but linear activation functions and single-sided saturating nonlinearities

like the widely used ReLLU in fact do not. Moreover, we find that there is no evident

causal connection between compression and generalization: networks that do not

compress are still capable of generalization, and vice versa. Next, we show that

the compression phase, when it exists, does not arise from stochasticity in training

by demonstrating that we can replicate the IB findings using full batch gradient

descent rather than stochastic gradient descent. Finally, we show that when an

input domain consists of a subset of task-relevant and task-irrelevant information,

hidden representations do compress the task-irrelevant information, although the

e il e N T o e e e B A e e e e B B s e s e T B s il e



e Mutual information is invariant under invertible transformations.

e BUT, if you discretize a continuous signal, you might get different

dNSWers.
Invertible nonlinearity (sigmoid) applied.

After discretizing, H(Z) and the mutual

information look reduced.
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Entropy and mutual information in

models of deep neural networks

Marylou Gabrié*!, Andre Manoel*?, Clément Luneau®, Jean Barbier?, Nicolas Macris*,

l"l()l'(‘“‘ l\'l'z&lkill&ll"-"“'r. l,(‘llk}l Z(l(‘l)()l'()\'}‘l""—'

!Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL University
“Parietal Team, INRIA, CEA, Université Paris-Saclay
‘Institut de Physique Théorique, CEA, CNRS, Université Paris-Saclay
Laboratoire de Théorie des Communications, Ecole Polytechnique Fédérale de Lausanne
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arX1v:1805.09785v2 [cs.LG] 29 Oct 2018

Abstract

We examine a class of stochastic deep learning models with a tractable method to compute
information-theoretic quantities. Our contributions are three-fold: (i) We show how entropies
and mutual informations can be derived from heuristic statistical physics methods. under the
assumption that weight matrices are independent and orthogonally-invariant. (ii) We extend
particular cases in which this result is known to be rigorously exact by providing a proof for
two-layers networks with Gaussian random weights, using the recently introduced adaptive
interpolation method. (iii) We propose an experiment framework with generative models of
synthetic datasets, on which we train deep neural networks with a weight constraint designed
so that the assumption in (i) is verified during learning. We study the behavior of entropies
and mutual informations throughout learming and conclude that, in the proposed setting, the
relationship between compression and generalization remains elusive.

For certain random networks,
mutual information can be
analytically calculated.

- Compression can occur even
without nonlinearities

- No implications for
generalization are observed.
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Conclusion

* Echo is a more powerful noise model, with exact rate
(instead of loose bounds)

e Useful wherever optimizing lossy compression is useful:
(supervised) information bottleneck and VAE...

* Compression/generalization? At least we can nail down compression

arXiv preprint in next day or two, poster

Me: gregv@isi.edu , Rob: brekelma@usc.edu

Thanks!


mailto:regv@isi.edu
mailto:brekelma@usc.edu

Why?

 Strongly outperforms standard VAE for rate-distortion for three
possible reasons:
* Bound on likelihood is tighter, due to exact Ml characterization
* Noise model is stronger, more general
* No assumptions of independence/Gaussianity required in noise or p(z)
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Sample dependent noise
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