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Theoretical physics
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Computational physics

https://www.theorie.physik.uni-muenchen.de/lsruhl/
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What is Quantum Theory?

Q u a n t u m Quantum theory is the most successful set of ideas ever devised by
human beings. It explains the periodic chart of the elements and why

chemical reactions take place. It gives accurate predictions about the

1 operation of lasers and microchips, the stability of DNA and how alpha

particles tunnel out of the nucleus.

RECENTLY, ITS
CONCEPTS HAVE BEEN THIS
GUANTUM LIKENED TO EASTERN BOOK ANSWERS
THEORY 15 PHILOSOPHY AND USED TO THE QUESTION:
NON-INTUITIVE | PROBE THE SECRETS OF | WHERE DID QUANTUM
AND DEFIES | CONSCIOUSNESS, FREE THEORY £OME
COMMON WILL AND THE FROMZ

STRUCTURE HAS
REVOLUTIONISED
HOW THE PHYSICcAL
WORLP 15 VIEWED.

QUANTUM
THEORY IS ESSENTIALLY |
MATHEMATICAL. ... ‘

THEORY HAS
NEVER FAILED.

Niels Bohr’s presentation of quantum theory in 1927 remains today’s
orthodoxy. But Einstein’s thought experiments in the 1930s questioned
the theory’s fundamental validity and are still debated today. Could he be

right again? Is there something missing?
Let's begin at the beginning . . .

Introducing Quantum theory y J.P. McEvoy




[ Dirac (1929)

* The underlying physical laws necessary for the
mathematical theory of a large part of physics and
the whole of chemistry are thus completely known,
and the difficulty is only that the exact application
of these laws leads to equations much too
complicated to be soluble.

* |t therefore becomes desirable that approximate
practical methods of applying quantum
mechanics should be developed, which can lead to
an explanation of the main features of complex
atomic systems without too much computation.



Machine learning

Newly popular algorithms which, combined
with modern computers, are being
implemented throughout society

Examples include Google's page rank
AlphaGo

Netflix movie suggestions

Google translate

All online ads

Based on statistics, especially Bayesian analysis



diabetic retinopathy

<« Hemorrhages

A. Healthy B. Diseased
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Molecular dynamics

Solve Newton’s equations for nuclei at given
temperature and pressure.

Can do a million atoms for r \‘ ;3,

Simulate medicines and mat

B ut J Ca n n Ot b rea k b O n d S ! Theoretical and Computational Biophysics Group

Beckman Institute
University of Illinois at Urbana-Champaign
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{ Basic Electronic Structure Problem }

« Just want E(R)

Eyina(R) A

Kieron Burke Automating insight 10



{Electronic Structure Problem: Diversity}

 For all everyday matter
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[ Why electronic structure problem is evil }

e Quantum mechanics really needed for electrons

* It's a many-body problem: Every electron sees
every other one, as well as nucleus.

» Required accuracy is about 1 in 107 for
electronic energy of 500 atoms, in chemistry or
materials science.

* When # electrons doubles, computer cost
increases by 128 if you solve S-eqn.



Mathematical form of problem

Hamiltonian for N electrons in the presence of external potential v(r):
H=T+ Ve +V,

where the kinetic and elec-elec repulsion energies are

:——ZV B ZZ“’I_"J‘

i=1 j#i
and difference between systems is N and the one-body potential

N N
V = V(I’,')
i=1

Often v(r) is electron-nucleus attraction

Za
V(r):_z|r—R

where « runs over all nuclei, plus weak applied E and B fields.

(T+ Vet VIV=FW E = min(V|T + Vee + V|V)

Kieron Burke Automating insight



[ The greatest free lunch ever: DFT }

* 1964: Hohenberg and Kohn proved a theorem
showing lowest energy can be found by search
over electronic densities (much simpler than
wavefunction)

* 1965: Created Kohn-Sham (KS) equations of
fake non-interacting electrons (not many-body
anymore) which, when solved, yield lowest E

and density alone.

Kieron Burke Automating insight 14



KS equations (1965)

Define fictitious non-interacting electrons satisfying: 4 . . :

1 N
{_§v2 + Vs(r)} 9;(r) = €9;(r), E : ‘¢j(r)|2 = n(r). 2
=1

where vg(r) is defined to yield n(r).

Define Tg as the kinetic energy of the KS electrons, U as their
Hartree energy and o _ '

F=T+4 Ve = Ts+ U+ Exc

the remainder is the exchange-correlation energy.
Most important result of exact DFT:

)= () + [ Pr PO el || vele) = 5

Knowing Exc[n| gives closed set of self-consistent equations.

DFT in a nutshell, Kieron Burke, Lucas O. Wagner, The Hubbard dimer: a density functional case study of a many-body problem D )
Int. J. Quant. Chem. 113, 96-101 (2013). Carrascal, J Ferrer, J C Smith, K Burke, J Physics: Cond Mat 27, 393001 (2015)
Kieron Burke At the crossroads...
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|

PHET

e Online simulations
from U Colorado

Kieron Burke

Automating insight
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The kicker

* Need a formula for a small fraction of
electronic energy, called XC energy, in terms
of density, containing all quantum many-body
effects.

* First formula (1965) good for solids, but not
accurate enough for chemistry.

* Next formulas (1990) give useful accuracy for
chemistry and materials.



[ Modern research to find XC energy J

(KL

Prectous
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Impact J

{ Electronic Structure Problem
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Applications

Computers, codes, algorithms always improving
Making bona fide predictions

E.g., a new better catalyst for Haber-Bosch process
(fixing’ ammonia from air) was predicted after
about 25,000 failed experiments (Norskov’s group)

Now scanning chemical and materials spaces using
big data methods for materials design (materials
genome project).

World'’s hottest superconductor (203K) is hydrogen
sulfide, predicted by DFT calculations, then made.

Latest generation of intel chips (needed for Mac
airbook) is half-size and Pb-free with help of DFT.




Walter Kohn (1923-2016)




[ Two problems in paradise

 Problem 1:

— By using fake electrons, cost increases by factor of 8
when size doubles.

— Limits sizes to 500 atoms on a single machine in a day.
— If we could avoid this, might be able to do 10° atoms.
— Again, a rule exists, and some folks try to find it, but
never accurately enough.
* Problem 2: Most interesting exotic phenomena in
solids are too strongly quantum mechanical, so all
today’s approximations fail

Kieron Burke Automating insight



Big data in materials

Materials genome project
Endless workshops and meetings

Topics include data mining for specific
functionality and machine-learned

classical forces

* Special issue of Journal of Chemical
Physics, Data-enabled Chemistry

Kieron Burke Automating insight
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[ Kernel ridge regression }

® Kernel ridge regression (KRR). Given {Xj, f]}

- 2:1 a;k(%;, %) length scale
]:

\

k(x,x') = exp(—|x — x'[[*/(207))

® Minimize:

M
= (f( )* + Mla”

g=1 \
noise level
o= (K+NI)"'f

Feb 10, 2017 Temple Materials Theory 24



{ Fitting a simple function

noisy data

Feb 10, 2017 Temple Materials Theory

1.0
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{ Too high noise level: underfit

noise level = 50

® noisy data
-=-=- ML

f(z)

o
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Medium noise level

noise level = 0.5
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Small noise level: overfit

Feb 10, 2017

f(x)
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Cross validation

® Always optimize on samples not in the training set

{xj, fi}

Feb 10, 2017 Temple Materials Theory
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Cross validation

® Always optimize on samples not in the training set

{X]7f]} )‘1701

Train f(x) — min|f(x) — ]

Feb 10, 2017 Temple Materials Theory



More cross validation

® Always optimize on samples not in the training set

{xj, f}

Feb 10, 2017
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Average over samples

® Always optimize on samples not in the training set

{vafj}

Feb 10, 2017
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Medium noise level

noise level = 0.5
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[ Exact function and best fit

noise level = 0.46 (optimized via cross validation)

4
® noisy data
-=-=- ML °
3F|—— exact

Feb 10, 2017 Temple Materials Theory



[ Demo problem in DFT }

® N non-interacting same-spin fermions confined to 1d box

® Define class of potential:

3
v(z) == aiexp(—(z —b;)*/(2c}))
i=1
® Represent the density on a grid with spacing Az = 1/(G — 1)

e ML-DFA for KE:

T(n) = TZ ajk(n;,n)

k[n,n"]=exp ( -I dx (n(x)-n’(x))?/(2c?2)

Kieron Burke Automating insight 35



Test case: KS electrons in a box

Generate 2000 potentials. Solve for up to 4 electrons.

N M A o |AT| |ATP |AT|™>
’ 40 24x107° 238 3.3 3.0 23.
g 60 1.0x107° 95 1.2 1.2 10.
0 | | . 80 6.7x107% 48 0.43  0.54 7.1
: 2 1 ; 100 3.4x1077 43 0.15 0.24 3.2
. . 150 2.5 %1077 33 0.060 0.10 1.3
F o 200 1.7x 1077 28 0.031 0.053 0.65
" o | 2 100 1.3x10°7 52 0.13  0.20 1.8
: 3 100 20x10°7 74 0.12 0.18 1.8
4 100 1.4x1077 73 0.078 0.14 2.3
1-4" 400 1.8x 1077 47 0.12  0.20 3.6

LDA ~ 223 kcal/mol, Gradient correction ~ 159 kcal/mol

Finding Density Functionals with Machine Learning John C.
8 Snyder, Matthias Rupp, Katja Hansen, Klaus-Robert Miiller,

| ——- EA)%&;?FA Kieron Burke, Phys. Rev. Lett. 108, 253002 (2012)

0 0.5 1
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Road map back to reality

Kieron Burke

Roadmap to 3d land

model selection, projected functional derivatives, OF-DFT

bond breaking, self-consistent densities

Id diatomics )L

. %
A}

“dlmen5|ona||ty, basis sets, representation, inversion symmetry

|
3d atoms, diatomics .

* full symmetries, scalmg

C& 3d molecules

scalability, data accumulatlon .~

ab-initio MD, active learning
Iarge systems, real applications

Automating insight
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[ Molecules and movies J
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UNIVERSITY

x Brockherde, Leslie Vogt, Li Li,
srman, Kieron Burke, Klaus-Robert Muller,
lature Communications, 2017

Kieron Burke Automating insight 38
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Facial recognition via PCA

Kieron Burke

At the crossroads.
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PCA basis for atomic densities

-15 -10 -5 0 5 10 15
i

FIG. 5. Partition density of each H atom in Hs.

FIG. 6. Single H atom densities for H atoms in different
chains and atomic distance (gray). The average density is

HértanPrede

FIG. 7. First 7 principal components of the densities shown
in Fig. 6, from top to bottom.

At the crossroads... 40



Learning Ey[Nn]

Kieron Burke
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Pure density functional for strong correlations and the thermodynamic limit from
Autom machine learning Li Li, Thomas E. Baker, Steven R. White, Kieron Burke, Phys. Rev.

B 94, 245129 (2016).



20 years ago

VOLUME 82, NUMBER 2 PHYSICAL REVIEW LETTERS 11 JANUARY 1999

Several Theorems in Time-Dependent Density Functional Theory

Paul Hessler,* Jang Park,” and Kieron Burke

Department of Chemistry, Rutgers University, 315 Penn Street, Camden, New Jersey 08102
(Received 25 September 1998)

The time dependence of the exchange-correlation energy in density functional theory is given in
terms of the exchange-correlation potential. The virial theorem for the exchange-correlation potential
is shown to hold for time-dependent electronic systems and is illustrated by an exactly solved model:
Hooke’s atom with a time-dependent force constant. A relation between the coupling constant and
functionals evaluated on scaled densities is derived. [S0031-9007(98)08169-1]

PACS numbers: 71.15.Mb, 31.15.Ew, 71.45.Gm

Kieron Burke Automating insight
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A unique grant renewal

101 North Wiimot Road, Suite 250

. Tu Arizona 85711

9 Research e
FAX 520/571-1119

Corporation ao-rerescomrg

Michael P Doyle, Pn.O.
Vico President
mdoyle@rescorp.org

April 25, 2000
Dr. Kieron Burke i

RO prvedeu W SUPPUINT WS CONUNUIENON 0F your collaboration with high school teacher Paul
Hessler. The two of you break all of the rules. Paul was not educated as a chemist or physicist,
the persons who we generally support. The kind of research that Paul does with you is not
considered to be possible by most science educators. You are in a graduate institution that, by
some elements of the media, is not attentive to teachers in high schools. All-in-all you defy

popular misconceptions in a unique way.

SN me. YT ameua I WIS G35 WWHAIKSHL GUSLS IUF ITSCAITA WILL D€ DOME DY Your research
accounts. In addition, Rutgers University has pledged additional funds, in the amount of $9,000
over the same time period, for travel and additional salary for Paul Hessler. The net outcome is a
unique partnership that serves the best i ofall d, as well as provides for the
advancement of science.

Please be aware that Partners in Science conferences will continue in 2001 and beyond in much
the same way as when they were ized by R C ion. The M. J. Murdock
Charitable Turst is organizing the 2001 meeting to be held in San Diego January 12-14, 2001. If
Paul intends to attend that meeting, Dr. John Van Zytveld of Murdock should be contacted.

The enclosed Accep of Conditions form should be completed and retumned to schedule
payment. Any restrictions or conditions that have been placed on this award are spelled out in this
letter and on the form.

Yours truly,
Michael P. Doyle
MPD:mb
Enclosure

Kieron Burke Automating insight
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Lessons

Machine learning is a huge huge thing,
impacting all aspects of human society

Just beginning to see how it benefits
theoretical physics

Extremely democratic — just need access to
web and a netbook

You can help create a more egalitarian world



TDDFT for WDM

Many processes require thermal TDDFT
E.g. stopping of a fast nucleus in matter

But any description must involve coupling
of electrons and nuclei, beyond Born-
Oppenheimer and beyond Mermin
functional.

Many, many illegal calculations
nonetheless.

Aim: Less lofty goal

— just linear response to weak time-dependent
perturbation

— Joule heating is 2" order in perturbation, so
temperature stays fixed

— Yields corrections to conductivities in MKS
calculations

Aurora Pribram-Jones

Thermal Density
Functional Theory:
Time-Dependent
Linear Response and
Approximate
Functionals from the
Fluctuation-
Dissipation Theorem
Aurora Pribram-
Jones, Paul E.
Grabowski, Kieron
Burke, Phys. Rev.
Lett. 116, 233001
(2016)



Summary

| believe machine-learning represents a paradigm
shift for STEM

Generating and storing vast amounts of data and
analyzing it

Data is generated by both experiment and
computation

Fake data is now used to train networks

Thanks to

— Students: Tom Baker, Li Li, John Snyder, Kevin Vu,
Isabelle Pelaschier

— Collaborators: Klaus Mueller, Matthias Rupp, Katia
Hansen, Felix Brockherde, Leslie Vogt, Mark Tuckerman

— Institute of Pure and Applied Math, UCLA
— Funders: NSF from chem, DMR, math



