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Physics

• Theoretical physics
• Computational physics
• Quantum mechanics
• Molecules and materials by design
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Theoretical physics
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Computational physics
https://www.theorie.physik.uni-muenchen.de/lsruhl/
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Quantum 
Mechanics
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Dirac (1929)

• The underlying physical laws necessary for the 
mathematical theory of a large part of physics and 
the whole of chemistry are thus completely known, 
and the difficulty is only that the exact application 
of these laws leads to equations much too 
complicated to be soluble. 

• It therefore becomes desirable that approximate 
practical methods of applying quantum 
mechanics should be developed, which can lead to 
an explanation of the main features of complex 
atomic systems without too much computation.
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Machine learning

• Newly popular algorithms which, combined 
with modern computers, are being 
implemented throughout society

• Examples include Google’s page rank
• AlphaGo
• Netflix movie suggestions
• Google translate
• All online ads
• Based on statistics, especially Bayesian analysis
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diabetic retinopathy
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Molecular dynamics

• Solve Newton’s equations for nuclei at given 
temperature and pressure.

• Use simple force fields between nuclei

• Can do a million atoms for many picoseconds

• Simulate medicines and materials

• But, cannot break bonds!
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Basic Electronic Structure Problem 

• Just want E(R)
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DFT in a Nutshell
Kieron Burke[a,b] and Lucas O. Wagner*[a,b]

The purpose of this short essay is to introduce students and

other newcomers to the basic ideas and uses of modern

electronic density functional theory, including what kinds of

approximations are in current use, and how well they work (or

not). The complete newcomer should find it orients them well,

while even longtime users and aficionados might find

something new outside their area. Important questions

varying in difficulty and effort are posed in the text, and are

answered in the Supporting Information. VC 2012 Wiley

Periodicals, Inc.

DOI: 10.1002/qua.24259

Electronic Structure Problem

For the present purposes, we define the modern electronic struc-

ture problem as finding the ground-state energy of nonrelativistic

electrons for arbitrary positions of nuclei within the Born-Oppen-

heimer approximation.[1] If this can be done sufficiently accurately

and rapidly on a modern computer, many properties can be pre-

dicted, such as bond energies and bond lengths of molecules,

and lattice structures and parameters of solids.

Consider a diatomic molecule, whose binding energy curve

is illustrated in Figure 1. The binding energy is given by

EbindðRÞ ¼ E0ðRÞ þ
ZA ZB
R

% EA % EB (1)

where E0(R) is the ground-state energy of the electrons with

nuclei separated by R, and EA and ZA are the atomic energy

and charge of atom A and similarly for B. The minimum tells us

the bond length (R0) and the well-depth (De), corrected by

zero-point energy (!hx=2), gives us the dissociation energy (D0).

The Hamiltonian for the N electrons is

Ĥ ¼ T̂ þ V̂ee þ V̂; (2)

where the kinetic energy operator is

T̂ ¼ % 1

2

XN

j¼1

r2
j ; (3)

the electron–electron repulsion operator is

V̂ee ¼
1

2

X

i 6¼j

1

jri % rjj
; (4)

and the one-body operator is

V̂ ¼
XN

j¼1

vðrjÞ: (5)

For instance, in a diatomic molecule, v(r) ¼ % ZA/r % ZB/|r % R|.

We use atomic units unless otherwise stated, setting

e2 ¼ !h ¼ me ¼ 1, so energies are in Hartrees (1 Ha ¼ 27.2 eV

or 628 kcal/mol) and distances in Bohr radii (1 a0 ¼ 0.529 Å).

The ground-state energy satisfies the variational principle:

E ¼ min
W

hWjĤjWi; (6)

where the minimization is over all antisymmetric N-particle

wavefunctions. This E was called E0(R) in Eq. (1).*

Many traditional approaches to solving this difficult many-

body problem begin with the Hartree–Fock (HF) approxima-

tion, in which W is approximated by a single Slater determi-

nant (an antisymmetrized product) of orbitals (single-particle

wavefunctions)[2] and the energy is minimized.[3] These include

configuration interaction, coupled cluster, and Møller-Plesset

perturbation theory, and are mostly used for finite systems,

such as molecules in the gas phase.[4] Other approaches use

reduced descriptions, such as the density matrix or Green’s

function, but leading to an infinite set of coupled equations

that must somehow be truncated, and these are more com-

mon in applications to solids.[5]

More accurate methods usually require more sophisti-

cated calculation, which takes longer on a computer. Thus,

there is a compelling need to solve ground-state electronic

structure problems reasonably accurately, but with a cost in

Figure 1. Generic binding energy curve. For N2, values for R0 and De are
given in Table 1. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

[a, b] K. Burke, L. O. Wagner
Department of Chemistry, University of California, Irvine, California 92697
Department of Physics, University of California, Irvine, California 92697
E-mail: lwagner@uci.edu

*Explain why a vibrational frequency is a property of the ground-state of the
electrons in a molecule.

VC 2012 Wiley Periodicals, Inc.

International Journal of Quantum Chemistry 2013, 113, 96–101 WWW.CHEMISTRYVIEWS.ORG96

TUTORIAL REVIEW WWW.Q-CHEM.ORG



Electronic Structure Problem: Diversity

• For all everyday matter
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Why electronic structure problem is evil

• Quantum mechanics really needed for electrons

• It’s a many-body problem:  Every electron sees 
every other one, as well as nucleus.

• Required accuracy is about 1 in 107 for 
electronic energy of 500 atoms, in chemistry or 
materials science.

• When # electrons doubles, computer cost 
increases by 128 if you solve S-eqn.
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Mathematical form of problem
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Hamiltonian

Hamiltonian for N electrons in the presence of external potential v(r):
Ĥ = T̂ + V̂ee + V̂ ,

where the kinetic and elec-elec repulsion energies are

T̂ = ≠1
2

Nÿ

i=1

Ò2

i , V̂ee =
1
2

Nÿ

i=1

Nÿ

j ”=i

1
|ri ≠ rj |

,

and di�erence between systems is N and the one-body potential

V̂ =
Nÿ

i=1

v(ri)

Often v(r) is electron-nucleus attraction

v(r) = ≠
ÿ

–

Z–

|r ≠ R–|

where – runs over all nuclei, plus weak applied E and B fields.
Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 7 / 39

Schrödinger equation

6N-dimensional Schrödinger equation for stationary states

{T̂ + V̂ee + V̂ } = E  ,  antisym

The one-particle density is much simpler than  :

n(r) = N

ÿ

‡1

. . .
ÿ

‡N

⁄
d

3
r2 . . . d

3
rN | (r‡1, r2‡2, . . . , rN‡N)|2

and n(r) d
3
r gives probability of finding any electron in d

3
r around r.

Wavefunction variational principle:
I E [ ] © È |Ĥ| Í is a functional

I Extrema of E [ ] are stationary states, and ground-state energy is

E = min
 

È |T̂ + V̂ee + V̂ | Í

where  is normalized and antisym.
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The greatest free lunch ever: DFT

• 1964: Hohenberg and Kohn proved a theorem 
showing lowest energy can be found by search 
over electronic densities (much simpler than 
wavefunction)

• 1965: Created Kohn-Sham (KS) equations of 
fake non-interacting electrons (not many-body 
anymore) which, when solved, yield lowest E 
and density alone. 
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KS equations (1965)
Kohn-Sham 1965

Define fictitious non-interacting electrons satisfying:

;
≠1

2Ò2 + vS(r)
<

„j(r) = ‘j„j(r),
Nÿ

j=1

|„j(r)|2 = n(r).

where vS(r) is defined to yield n(r).
Define TS as the kinetic energy of the KS electrons, U as their
Hartree energy and

T + Vee = TS + U + EXC

the remainder is the exchange-correlation energy.
Most important result of exact DFT:

vS(r) = v(r) +
⁄

d
3
r

n(rÕ)

|r ≠ rÕ| + vXC[n](r), vXC(r) =
”EXC

”n(r)
Knowing EXC[n] gives closed set of self-consistent equations.
Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 14 / 39

KS potential of He atom

n(r)

!2 !1 0 1 2

!4

!2

0

v(r)

vS(r)

≠2
r

z

Every density has (at most) one KS
potential.a
Red line: vS(r) is the exact KS
potential.

a Accurate exchange-correlation
potentials and total-energy components for
the helium isoelectronic series, C. J.

Umrigar and X. Gonze, Phys. Rev. A 50,

3827 (1994).

Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 15 / 39

At the crossroads... 15

F =

Kieron Burke

DFT in a nutshell, Kieron Burke, Lucas O. Wagner, 
Int. J. Quant. Chem. 113, 96-101 (2013). 

The Hubbard dimer: a density functional case study of a many-body problem D J 
Carrascal, J Ferrer, J C Smith, K Burke, J Physics: Cond Mat 27, 393001 (2015) 



PHET

• Online simulations 
from U Colorado

Kieron Burke Automating insight 16



The kicker

• Need a formula for a small fraction of 
electronic energy, called XC energy, in terms 
of density, containing all quantum many-body 
effects.

• First formula (1965) good for solids, but not 
accurate enough for chemistry.

• Next formulas (1990) give useful accuracy for 
chemistry and materials. 

Kieron Burke Automating insight 17



Modern research to find XC energy

Kieron Burke Automating insight 18



Electronic Structure Problem: Impact

• Absurdly useful

Kieron Burke Automating insight 19
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Applications

• Computers, codes, algorithms always improving
• Making bona fide predictions
• E.g., a new better catalyst for Haber-Bosch process 

(‘fixing’ ammonia from air) was predicted after 
about 25,000 failed experiments (Norskov’s group)

• Now scanning chemical and materials spaces using 
big data methods for materials design (materials 
genome project).

• World’s hottest superconductor (203K) is hydrogen 
sulfide, predicted by DFT calculations, then made.

• Latest generation of intel chips (needed for Mac 
airbook) is half-size and Pb-free with help of DFT.
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Walter Kohn (1923-2016)
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Two problems in paradise

• Problem 1: 
– By using fake electrons, cost increases by factor of 8 

when size doubles.
– Limits sizes to 500 atoms on a single machine in a day.
– If we could avoid this, might be able to do 106 atoms.
– Again, a rule exists, and some folks try to find it, but 

never accurately enough.
• Problem 2: Most interesting exotic phenomena in 

solids are too strongly quantum mechanical, so all 
today’s  approximations fail
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Big data in materials

• Materials genome project
• Endless workshops and meetings
• Topics include data mining for specific 

functionality and machine-learned 
classical forces

• Special issue of Journal of Chemical 
Physics, Data-enabled Chemistry
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Kernel ridge regressionMethod

http://www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-Ridge.pdf

f̂(x) =
MX

j=1

�jk(xj ,x)

k(x,x0) = exp(�kx� x0k2/(2�2))

• Kernel ridge regression (KRR).  Given {xj , fj}

• Minimize:

C(↵) =
MX

j=1

(f̂(xj)� fj)
2 + ⇥2⇥�⇥2

↵ = (K + �2I)�1f
noise level

length scale

Feb 10, 2017 Temple Materials Theory 24



Fitting a simple function
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Too high noise level: underfit
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Medium noise level
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Small noise level: overfit
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Cross validation
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Cross validation
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More cross validation
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Average over samples
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Medium noise level

Feb 10, 2017 Temple Materials Theory 33



Exact function and best fit
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Demo problem in DFT

• Represent the density on a grid with spacing

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing

Prototype

• N non-interacting same-spin fermions confined to 1d box

• ML-DFA for KE:

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
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v(x) = �
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We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
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C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)
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whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2
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For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.
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TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing

• Define class of potential:

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing
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Test case: KS electrons in a box
Dataset

Generate 2000 potentials.  Solve for up to 4 electrons.
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x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing
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Using standard methods from machine learning, we introduce a novel technique for density functional
approximation. We use kernel ridge regression with a Gaussian kernel to approximate the non-interacting
kinetic energy of 1d multi-electron systems. With fewer than 100 training densities, we can achieve
mean absolute errors of less than 1 kcal/mol on new densities. We determine densities for which our
new functional will fail or perform well. Finally, we use principle component analysis to extract accurate
functional derivatives from our functional, enabling an orbital-free minimization of the total energy to
find a self-consistent density. This empirical method has two parameters, set via cross-validation, and
requires no human intuition. In principle, this general technique can be extended to multi-dimensional
systems, and be used to approximate exchange-correlation density functionals.

More than 10,000 papers per year report solutions to
electronic structure problems using Kohn-Sham (KS) den-
sity functional theory (DFT) [1, 2], all approximating the
exchange-correlation (XC) energy as a functional of the elec-
tronic spin densities. The quality of the results depends
crucially on these density functional approximations (DFAs)
[]. Present DFAs often fail for strongly correlated systems[],
rendering the methodology useless for some of the most
interesting problems.

There is a never-ending search for improved XC approxi-
mations. The original local density approximation (LDA) of
Kohn and Sham [2] is uniquely defined by the properties of
the uniform gas, and has been argued to be a universal limit
of all systems [3, 4]. But the refinements that have proved
useful in chemistry and materials are not, and di�er both in
their derivations and details. Traditionally, physicists have
championed a non-empirical approach, deriving approxima-
tions from quantum mechanics and avoiding fitting to spe-
cific finite systems[]. But chemists typically use a few [5, 6]
or several dozen [7] parameters to improve accuracy on a
limited class of molecules. Non-empirical functionals can be
considered controlled extrapolations that work well across a
broad range of systems and properties, bridging the divide
between molecules and solids. Empirical functionals are lim-
ited interpolations that are more accurate for the molecular
systems they are fitted to, but often fail for solids. A re-
cent example is the van der Waals functional of Langreth
and Lundquist [8], and an empirical derivative for which no
derivation was deemed necessary[]. Passionate debates are
fueled by this cultural divide.

Machine learning (ML) is a powerful tool for finding pat-
terns in high-dimensional spaces. It employs algorithms by
which the computer learns from empirical data via induc-
tion. ML has been very successful in many applications,
including neuroscience ?? and chemistry [9]. In this work,
we apply ML methodology to a prototype density functional
problem: non-interacting spinless fermions confined to a
1d box, subject to a smooth potential. The accuracy we
achieve in approximating the kinetic energy (KE) of this
system is far beyond the capabilities of present human-
designed approximations and is su⇥cient to produce highly

accurate self-consistent densities—the functional derivative
is extremely accurate. We also define key technical concepts
needed to apply ML to DFT problems.
Empirical DFAs employ the basic types of approximations

derived from general principles, fitting the parameters to
training sets of energy di�erences[]. They explore only an
infinitesimal fraction of all possible functionals and use rel-
atively few data points. The ML-derived DFA (ML-DFA)
achieves chemical accuracy using many more inputs, with-
out reference to any of the underlying physics. Intuition
is kept to a minimum but remains necessary to specify the
basic mechanism and representation of data.
We illustrate the accuracy of the ML-DFA in Fig. 1, in

which the functional was constructed from 100 densities on
a dense grid. The successful construction of this functional
opens up a new approach to functional approximation, en-
tirely distinct from previous approaches: The ML-DFA con-
tains on the order of 104 empirical numbers and satisfies
none of the standard exact conditions.
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FIG. 1. Comparison of a sample projected (see within) func-
tional derivative of the ML-DFA with the projected exact
derivative.

The prototype DFT problem we consider is N non-
interacting spinless Fermions confined to a 1d box, 0 �

m = 15, � = 5
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II. TECHNICAL BACKGROUND

Kernel ridge regression (KRR) is a non-linear version
of regression with regularization to prevent overfitting [3].
(introduce as gaussian process regression instead?) For
KRR, our machine learning approximation (MLA) takes the
form

TML(n) =
M!

j=1

!jk(nj ,n), (1)

where !j are weights to be determined, nj are training
densities and k is the kernel, which measures similarity
between densities. We choose a Gaussian kernel, common
in ML:

k(n,n!) = exp(!#n! n
!#2/(2"2)), (2)

where the hyperparameter " is called the length scale. The
weights are found by minimizing the cost function

C(!) =
M!

j=1

#T 2

j + $#!#2, (3)

where #Tj = TML

j ! Tj and ! = (!1, . . . ,!M ). The
second term is a regularizer that penalizes large weights
to prevent overfitting. The hyperparameter $ controls
regularization strength. Minimizing C(!) gives

! = (K + $I)"1
T , (4)

where K is the kernel matrix, with elements Kij =
k(ni,nj), and I is the identity matrix.

The hyperparameters " and $ are determined via leave-
one-out (LOO) cross validation, Define an ensemble of
functionals {TML

i,",#(n)} where the ith training density
is excluded. The hyperparameters are optimized by
minimizing the ensemble mean absolute error (MAE):

%($,") =
1

M

M!

i=1

|TML

i,",#(ni)! Ti| (5)

In recent work [? ], we demonstrated for the first time,
the ability of ML to approximate density functionals, for
a simple 1d model. However, in that work, the fermions
are confined to live inside a box, restraining the variety of
possible densities. In particular, there is no analog of a
binding energy curve, where a density is centered on two
sites whose separation varies continuously from small to
infinite.

In the present work, we consider one-dimensional
diatomic ’molecules’. The one-body potential attraction
of an ’atom’ of nuclear charge Z is chosen to be soft-
Coulombic[? ]

v(x) = ! Z$
1 + x2

, (6)

as this has been used in a variety of contexts. We use the
same form and strength for the internuclear repulsion:

VNN (R) =
Z2

$
1 +R2

(7)

Fig. 2 shows the densities and potentials for the united
atom, equilibrium bond length, and stretched diatomic.
[J, because you have no e-e interaction, your equilibrium
molecules looks very much like the united atom limit, not
like a molecule. We need to adjust the nuc rep to make
this look more like a molecule, or use self-consistent XC
calculations].

To generate a dissociation curve like that of Fig 1, we
consider bond lengths up to R = 15, and so place the entire
system on a 500 point grid from x = !20 to 20. We then
solve the Schrödinger equation numerically using Numerov’s
method [? ]. We doubly-occupy the lowest Z orbitals, so
that N = 2Z, where N is the number of fermions. We
extract various energies and the density as a function of R
for di"erent values of N .

To construct the model, we choose M training densities
at evenly spaced R between 0 and 15. Table I shows the
performance of the MLA.

III. CHALLENGES OF SELF-CONSISTENCY

A KE functional that predicts only the energy is useless
in practice, since the minimization:

&T [n]

&n(x)
= µ! v(x), (8)

where v(x) is the potential and where µ is adjusted to
produce the required particle number, requires an accurate
functional derivative (gradient). Fig. 3 shows the gradient
of our MLA evaluated at the ground-state density is very
di"erent from the exact.

FIG. 2. The electronic density and potential for Z = 1, atR =
0 (solid), equilibrium bond length (dashed), and stretched at
R = 15 (dot-dashed).

The prototype DFT problem we consider is N noninter-
acting spinless fermions confined to a 1D box, 0 ! x ! 1,
with hard walls. For continuous potentials vðxÞ, we solve
the Schrödinger equation numerically with the lowest N
orbitals occupied, finding the KE and the electronic density
nðxÞ, the sum of the squares of the occupied orbitals. Our
aim is to construct a MLA for the KE T½n% that bypasses
the need to solve the Schrödinger equation—a 1D analog
of orbital-free DFT [14]. (In 3D orbital-free DFT, the local
approximation as used in the Thomas-Fermi theory, is
typically accurate to within 10%, and the addition of the
leading gradient correction reduces the error to about 1%
[15]. Even this small an error in the total KE is too large to
give accurate chemical properties.)

First, we specify a class of potentials from which we
generate densities, which are then discretized on a uniform
grid of G points. We use a linear combination of three
Gaussian dips with different depths, widths, and centers,

vðxÞ ¼ '
X3

i¼1

ai exp½'ðx' biÞ2=ð2c2i Þ%: (1)

We generate 2000 such potentials, randomly sampling
1< a< 10, 0:4< b< 0:6, and 0:03< c< 0:1. For each
vjðxÞ, we find for N up to four electrons, the KE Tj;N and
density nj;N in RG on the grid using Numerov’s method
[16]. For G ¼ 500, the error in Tj;N due to discretization is
less than 1:5 ( 10'7. We take 1000 densities as a test set,
and chooseM others for training. The variation in this data
set for N ¼ 1 is illustrated in Fig. 2.

Kernel ridge regression is a nonlinear version of regres-
sion with regularization to prevent overfitting [17]. For
kernel ridge regression, our MLA takes the form,

TMLðnÞ ¼ !T
XM

j¼1

!jkðnj;nÞ; (2)

where !j are weights to be determined, nj are training
densities, and k is the kernel, which measures similarity
between densities. Here, !T is the mean KE of the training

set, inserted for convenience. We choose a Gaussian kernel,
common in ML,

kðn;n0Þ ¼ exp½'kn' n0k2=ð2"2Þ%; (3)

where the hyperparameter " is called the length scale. The
weights are found by minimizing the cost function,

C ð!Þ ¼
XM

j¼1

"T2
j þ #k!k2; (4)

where "Tj ¼ TML
j ' Tj and ! ¼ ð!1; . . . ;!MÞ. The sec-

ond term is a regularizer that penalizes large weights to
prevent overfitting. The hyperparameter # controls regulari-
zation strength. Minimizing Cð!Þ gives

! ¼ ðK þ #IÞ'1T; (5)

where K is the kernel matrix with elements K ij ¼ kðni;njÞ,
and I is the identity matrix. Then " and # are determined
through tenfold cross validation: the training set is partitioned
into 10 bins of equal size. For each bin, the functional is
trained on the remaining samples, and" and# are optimized
by minimizing the mean absolute error (MAE) on the bin.
The partitioning is repeated up to 40 times, and the hyper-
parameters are chosen as the median over all bins.
Table I gives the performance of TML [Eq. (2)] trained on

MN-electron densities and evaluated on the corresponding
test set. ThemeanKEof the test set forN ¼ 1 is 5.40 hartree
(3390 kcal=mol). To contrast, the LDA in 1D is Tloc½n% ¼
$2

R
dx n3ðxÞ=6 and the von Weizsäcker functional is

TW½n% ¼ R
dx n 0ðxÞ2=½8nðxÞ%. For N ¼ 1, the MAE of

Tloc on the test set is 217 kcal=mol, and the modified
gradient expansion approximation [19], TMGEA½n% ¼
Tloc½n% ' cTW½n%, has a MAE of 160 kcal=mol, where
c ¼ 0:0543 has been chosen to minimize the error (the
gradient correction is not as beneficial in 1D as in 3D).
For TML, both the mean and maximum absolute errors
improve as N or M increases (the system becomes more
uniform as N ! 1 [3]). At M ¼ 80, we have already

FIG. 2 (color online). The shaded region shows the extent of
variation of nðxÞ within our data set for N ¼ 1. Exact (red, solid)
and a self-consistent (black, dashed) density for potential of Fig. 3.

FIG. 1 (color online). Comparison of a projected (see within)
functional derivative of our MLA with the exact curve.
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residues near the entrance and exit of the pore that favor
or disfavor the passage of ions solely based on their charge
[32].

Acid-sensing ion channels (ASICs) are cation channels
whose gating is controlled by extracellular pH. Equi-
librium MD simulations of ASIC1 at different ionic
solutions and concentrations examining multiple titration
states of various acidic residues have been used to
identify potential proton and cation binding sites and
to study cation/H+-induced protein conformational
changes [33].

Membrane transporters and carriers
In contrast to membrane channels that provide a passive
permeation pathway for their substrates, transport in
membrane transporters is mediated by close interaction
and engagement of the protein and the substrate. This is
necessary owing to the active (energy-dependent) nature
of the transport process during which the energy provided
by various sources, for example, ATP hydrolysis or an
ionic gradient across the membrane, is used to actively
‘pump’ the substrate across the membrane, often against
its electrochemical gradient. Shown in Figure 3, mem-
brane transporters are structurally much more diverse
than membrane channels, as they need to harvest various
sources of energy in the cell and efficiently couple them
to substrate transport. They are also far slower than
channels, since several stepwise protein conformational
changes of various magnitude are usually involved in their
mechanism. Along with the recent availability of struc-
tures for several different membrane transporters, MD
simulations have been employed to investigate dynamical
properties and details of the mechanism of function.
Although the time scale of the entire transport cycle

proves to be usually beyond the reach of transporter
MD simulations, such simulations have proven successful
in describing individual steps and transitions involved in
such cycles.

ABC transporters
ATP-binding cassette (ABC) transporters use ATP to
drive active transport of substrates across the membrane.
ATP binding and hydrolysis in the nucleotide binding
domains (NBDs) drive conformational changes of the
transmembrane domains (TMDs), thus switching sub-
strate accessibility between the cytoplasmic and extra-
cellular sides of the membrane. Elucidating the
conformational changes induced by ATP binding and
hydrolysis in the NBDs and the coupling of NBDs and
TMDs constitute two major themes in simulation studies
of ABC transporters.

The dimeric structures of the NBDs of maltose transpor-
ter (MalK) and an archaeal ABC transporter (MJ0796)
have been extensively used in simulation studies. Earlier
MD simulations of MalK performed on the three crystal
forms of MalK verified the nucleotide dependence of
opening and closing of the NBDs [34]. Simulations on the
order of 20 ns performed on different nucleotide-bound
forms of MJ0796 identified the rotation of the helical
subdomain as the primary response to ATP replacement
by ADP [35], while longer simulations (30–50 ns) were
employed to investigate the mechanism of dimer separ-
ation [36]. Using even longer simulations (! 70 ns) of
MalK, and through simulating the immediate effect of
ATP hydrolysis (conversion to ADP-Pi), it was proposed
that the hydrolysis reaction itself is the initial trigger for
dimer opening [37]. It was also shown that despite the
presence of two nucleotide-binding sites, only one ATP

132 Theory and simulation

Figure 3

Membrane transporters studied recently. Shown in the same format as in Figure 1, each transporter is colored according to domain with substrates
and direction of transport indicated. These transporters are found in a variety of cellular membranes including the cytoplasmic membrane (e.g.
MalEFGK), the bacterial outer membrane (BtuB), and the mitochondrial inner membrane (AAC).

Current Opinion in Structural Biology 2009, 19:128–137 www.sciencedirect.com

Current Opinion in Structural Biology 2009, 19:128–137
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ber of grid points, and rapidly becomes unfeasible as the
number of H atoms grows. Thus a simpler representation
of the density is required. To overcome those di�culties,
we introduce a basis set. Inspired by the localized atomic
bases used in most quantum chemical codes, we devel-
oped a data-driven basis set using Hirshfeld partitioning
[37] and principal component analysis (PCA).

FIG. 5. Partition density of each H atom in H8.

FIG. 6. Single H atom densities for H atoms in di↵erent
chains and atomic distance (gray). The average density is
plotted in red.

To partition a molecular density via the Hirshfeld
scheme, begin with the protomolecule of overlapped
atomic densities at the nuclear positions of the real
molecule. If n0

i (x) = n0
1(x�(i�1)R) is an isolated atomic

density at the i-th nuclear center, spaced R apart, then

n0(x) =
NX

i=1

n0
i (x) (11)

is the density of the protomolecule, where R is the inter-
atomic spacing. We define a weight

wi(x) = n0
i (x)/n

0(x), (12)

FIG. 7. First 7 principal components of the densities shown
in Fig. 6, from top to bottom.

associated with each atom, and then define the density
of each Hirshfeld atom within the real molecule as

ni(x) = wi(x)n(x), (13)

where n(x) is the exact molecular density. The ground
state density of a single hydrogen atom n0

i (x) is reported
in Ref. 23. Fig. 5 shows partition densities ni(x) of atoms
in one H8.
Next, for a specific chain length N , we consider a range

of interatomic separations R, and consider the collection
of every atomic density within the chain for every value of
R in a training set, each centered on the origin, as shown
in Fig. 6. These individual atomic partition densities re-
flect the diverse behaviors caused by the interaction be-
tween the hydrogen atoms inside the chains. A principal
component analysis is applied to these densities, and the
eigenvalues are ordered in decreasing magnitude to find a
subspace with the maximum variance. Each atomic den-
sity can be accurately represented by the base density
f0(x) (red in Fig. 6) and 7 principal components (Fig.
7),

ni(R, x) = f0(x) +
7X

p=1

ci,p(R)fp(x). (14)

Thus the total density of HN with separations R isPN
i ni(R, x), and is described by just 7N coe�cients.

Note that f0(x) is very close to an isolated atom density,
but we use the average to center our data for the PCA
analysis. Our representation greatly reduces the num-
ber of variables in the density representation for a given
chain length, and saves a significant amount of computa-
tional cost when solving for the ground state density of
the system. This new basis set is completely data-driven
and physically meaningful.

We next repeated these calculations for a sequence of
chains of increasing length. In each case, we train FML[n]
on a limited training set, and then compare on a test set
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machine learning Li Li, Thomas E. Baker, Steven R. White, Kieron Burke, Phys. Rev. 
B 94, 245129 (2016).
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Several Theorems in Time-Dependent Density Functional Theory

Paul Hessler,* Jang Park,† and Kieron Burke
Department of Chemistry, Rutgers University, 315 Penn Street, Camden, New Jersey 08102

(Received 25 September 1998)
The time dependence of the exchange-correlation energy in density functional theory is given in

terms of the exchange-correlation potential. The virial theorem for the exchange-correlation potential
is shown to hold for time-dependent electronic systems and is illustrated by an exactly solved model:
Hooke’s atom with a time-dependent force constant. A relation between the coupling constant and
functionals evaluated on scaled densities is derived. [S0031-9007(98)08169-1]

PACS numbers: 71.15.Mb, 31.15.Ew, 71.45.Gm

Ground-state electronic density functional theory (DFT)
has long been used to perform electronic structure calcu-
lations of solids and has recently become popular in quan-
tum chemistry [1]. Many useful properties can be derived
from calculations of ground-state electronic energies, such
as geometric and vibrational structure and static response
functions.
An important part of making DFT results useful to the

broad community of users has been in improving the ac-
curacy of approximations to the exchange-correlation en-
ergy functional, EXCfng, the only part of the energy which
must be approximated in a Kohn-Sham calculation [2].
A vital part of this approach, in turn, has been the study
of exact conditions satisfied by density functionals, espe-
cially the exchange and correlation energies. A simple
example is that the correlation energy is never positive,
and always finite [3]. Satisfaction of energetically rele-
vant conditions is often used to guide construction of
approximations, such as the Perdew-Burke-Ernzerhof
generalized gradient approximation [4]. This functional is
now commonly used in electronic structure calculations.
In the past several years, interest has grown in time-

dependent density functional theory (TDDFT), which is
now a very active research area [5]. There is a wealth
of applications for an accurate theory, such as atoms,
molecules, and solids in intense laser fields [6], dynamic
response properties [7], and electronic spectroscopy [8].
A fully developed TDDFT would allow, e.g., study of
optical limiting materials [9] or electron dynamics on a
femtosecond time scale [10].
While formal TDDFT was put on solid ground with the

Runge-Gross theorem [11] (the analog of the Hohenberg-
Kohn theorem), exploration of the exact properties
of time-dependent functionals is still in its infancy.
Several exact conditions have been found, including
Newton’s third law [12], which implies that the net
exchange-correlation force must vanish, and transla-
tional invariance, which states that the time-dependent
exchange-correlation potential yXCsrtd for a boosted
static density will be that of the unboosted density, evalu-
ated at the boosted point. The latter theorem, applied
to a harmonic potential, showed that the Gross-Kohn

approximation [13] for frequency-dependent response
properties violates the Kohn theorem [14]. This led to
several new approximations [15], which overcome this
difficulty, but remain largely untested.
In this work, we take a different approach from previ-

ous workers, in that we consider the energy components
of the system, even though the total energy is not con-
served. We find several simple relations satisfied by these
energy components, which are then restrictions which ap-
proximate functionals should satisfy. We also derive the
relation between coordinate scaling and the adiabatic cou-
pling constant.
We begin our proofs with the Heisenberg equation

of motion for any operator Â on a quantum-mechanical
system:

ŸA ≠

*
≠Â

≠t

+
1

i

h̄
kfĤ, Âgl , (1)

where A ≠ kÂl, and the dot denotes a time derivative.
We apply this to a system of N identical particles, with
Ĥ ≠ T̂ 1 V̂ , where T̂ is the kinetic energy operator,
and V̂ is the potential energy operator. For interacting
electronic systems, the potential consists of a time-
dependent one-body contribution, Vextstd, and a two-body
contribution, Vee, the Coulomb interaction between the
electrons. Applying Eq. (1) to Â ≠ Ĥ itself, we find

ŸT 1 ŸVee 1 ŸVext ≠

*
≠Vext

≠t

+
. (2)

Since Vext ≠
R

d
3
r nsrtdyextsrtd,

ŸT 1 ŸVee ≠ 2
Z

d
3
r Ÿnsrtdyextsrtd . (3)

So far, we have simply derived a general result for
time-dependent quantum mechanics. But we now apply
this to the Kohn-Sham system, i.e., that fictitious system
of noninteracting particles which has the same time-
dependent density nsrtd. Thus

ŸTS ≠ 2
Z

d
3
r ŸnsrtdySsrtd , (4)

where TS is the noninteracting kinetic energy and ySsrtd
is the Kohn-Sham potential. Analogous to the ground
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My experience with teachers

Kieron Burke Automating insight 43

2/15/2019 Burke Group

http://dft.uci.edu/photos.php 1/1

© 2010­2018 Kieron Burke, last updated: November 06 2018 19:09:35.

quicklinks: 
NEWS & EVENTS 

PUBLICATIONS 
THE ABC OF DFT   burke research group

homehome researchresearch groupgroup calendarcalendar teachingteaching student infostudent info contactcontact

2/15/2019 Burke Group

http://dft.uci.edu/photos.php 1/1

© 2010­2018 Kieron Burke, last updated: November 06 2018 19:09:35.

quicklinks: 
NEWS & EVENTS 

PUBLICATIONS 
THE ABC OF DFT   burke research group

homehome researchresearch groupgroup calendarcalendar teachingteaching student infostudent info contactcontact



A unique grant renewal

Kieron Burke Automating insight 44



Lessons

• Machine learning is a huge huge thing, 
impacting all aspects of human society

• Just beginning to see how it benefits 
theoretical physics

• Extremely democratic – just need access to 
web and a netbook 

• You can help create a more egalitarian world

Kieron Burke Automating insight 45



TDDFT for WDM

• Many processes require thermal TDDFT
• E.g. stopping of a fast nucleus in matter
• But any description must involve coupling 

of electrons and nuclei, beyond Born-
Oppenheimer and beyond Mermin
functional.

• Many, many illegal calculations 
nonetheless.

• Aim: Less lofty goal 
– just linear response to weak time-dependent 

perturbation
– Joule heating is 2nd order in perturbation, so 

temperature  stays fixed
– Yields corrections to conductivities in MKS 

calculations
Kieron Burke Thermal stitching 46

Thermal Density 
Functional Theory: 
Time-Dependent 
Linear Response and 
Approximate 
Functionals from the 
Fluctuation-
Dissipation Theorem  
Aurora Pribram-
Jones, Paul E. 
Grabowski, Kieron
Burke, Phys. Rev. 
Lett. 116, 233001 
(2016)

Aurora Pribram-Jones



Summary

• I believe machine-learning represents a paradigm 
shift for STEM

• Generating and storing vast amounts of data and 
analyzing it

• Data is generated by both experiment and 
computation

• Fake data is now used to train networks
• Thanks to 

– Students: Tom Baker, Li Li, John Snyder, Kevin Vu, 
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– Institute of Pure and Applied Math, UCLA
– Funders: NSF from chem, DMR, math
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