- If you have it, please take out:
 - > pen/pencil
 - > paper
 - > laptop

Sit close to at least one other person!

Understanding how artificial neural networks understand

Lauren Hayward Sierens

February 16, 2019

Automating Insight Conference, KITP

What comes to mind when you hear about "machine learning"?

- Artificial intelligence
- Neural networks
- Deep learning
- Computer science

Linear algebra

•

Calculus

Artificial neural networks

arXiv:1803.08823

arXiv:1606.02718

arXiv:1609.02552

Application of neural networks: classifying images

Or, more mathematically:

Application of neural networks: classifying images

Example: classifying images of birds and dogs

Application of neural networks: classifying images

Example: identifying whether an image contains one rectangle

Neural network input

$$Input x = 0$$

$$x_{1} = 0$$

$$x_{2} = 1$$

$$x_{3} = 1$$

$$x_{4} = 0$$

$$x_{5} = 1$$

$$x_{6} = 0$$

$$x_{7} = 0$$

$$x_{8} = 0$$

$$x_{9} = 1$$

How do we translate

into an input for the neural network?

$\mathbf{x}_1 = 0$	$\mathbf{x}_2 = 0$	$\mathbf{x}_3 = 0$
$\mathbf{x}_4 = 1$	$x_5 = 1$	$\mathbf{x}_6 = 0$
$x_7 = 1$	$\mathbf{x}_8 = 1$	$\mathbf{x}_9 = 0$

 $\mathbf{x} = [0, 0, 0, 1, 1, 0, 1, 1, 0]$

Neural network input

How do we translate

into an input for the neural network?

Hint:

- a) [1,1,1,0,0,0,0,0,0]
- b) [0,1,1,0,1,1,0,1,1]
- c) [0,0,0,1,1,1,1,1]
- d) [1,0,0,1,0,0,1,0,0]

Neural network input

How do we translate

into an input for the neural network?

Hint:

- a) [1,1,1,0,0,0,0,0]
- b) [0,1,1,0,1,1,0,1,1]
- c) [0,0,0,1,1,1,1,1]

d) [1,0,0,1,0,0,1,0,0]

= 0	=	X 3	X 2	\mathbf{x}_1
= 1	=	X 6	X 5	\mathbf{X}_4
		X 9	X 8	X 7
		X 9	X 8	X 7

Neural network layers

The output
$$a_i^{(L)}$$
 is given by

$$a_i^{(L)} = g\left(\sum_j a_j^{(L-1)} W_{ji}^{(L)} + b_i^{(L)}\right) \begin{array}{c} \text{Linear} \\ \text{algebra!} \end{array}$$

where:

$$g(z) = \frac{1}{1 + e^{-z}}$$

- . The variables $W_{ji}^{(L)}$ are called weights
- . The variables $b_i^{(L)}$ are called biases

$$a_i^{(L)} = g\left(\sum_j a_j^{(L-1)} W_{ji}^{(L)} + b_i^{(L)}\right)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

$$\sum_{i} a_{j}^{(0)} W_{j1}^{(1)} = 0 + 0 + 0 + (1 \times (-3.8)) + 0 + 0 + (1 \times (-0.3)) + 0 + 0 = -4.1$$

$$a_i^{(L)} = g\left(\sum_j a_j^{(L-1)} W_{ji}^{(L)} + b_i^{(L)}\right)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

$$\sum_{j} a_{j}^{(0)} W_{j1}^{(1)} = 0 + 0 + 0 + (1 \times (-3.8)) + 0 + 0 + (1 \times (-0.3)) + 0 + 0 = -4.1$$
$$\sum_{j} a_{j}^{(0)} W_{j1}^{(1)} + b_{1}^{(1)} = -4.1 + (-0.3) = -4.4$$

$$a_i^{(L)} = g\left(\sum_j a_j^{(L-1)} W_{ji}^{(L)} + b_i^{(L)}\right)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

$$\begin{split} \sum_{j} a_{j}^{(0)} W_{j1}^{(1)} &= 0 + 0 + 0 + (1 \times (-3.8)) + 0 + 0 + (1 \times (-0.3)) + 0 + 0 = -4.1 \\ \sum_{j} a_{j}^{(0)} W_{j1}^{(1)} + b_{1}^{(1)} &= -4.1 + (-0.3) = -4.4 \\ a_{1}^{(1)} &= g \left(\sum_{j} a_{j}^{(0)} W_{j1}^{(1)} + b_{1}^{(1)} \right) = g(-4.4) = \frac{1}{1 + e^{-(-4.4)}} = 0.012 \end{split}$$

$$a_i^{(L)} = g\left(\sum_j a_j^{(L-1)} W_{ji}^{(L)} + b_i^{(L)}\right)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

$$\sum_{j} a_{j}^{(0)} W_{j1}^{(1)} = 0 + 0 + 0 + (1 \times (-3.8)) + 0 + 0 + (1 \times (-0.3)) + 0 + 0 = -4.1$$

$$\sum_{j} a_{j}^{(0)} W_{j1}^{(1)} + b_{1}^{(1)} = -4.1 + (-0.3) = -4.4$$

$$a_{1}^{(1)} = g\left(\sum_{j} a_{j}^{(0)} W_{j1}^{(1)} + b_{1}^{(1)}\right) = g(-4.4) = \frac{1}{1 + e^{-(-4.4)}} = 0.012$$
 Output from layer 1, neuron 1

$$a_i^{(L)} = g\left(\sum_j a_j^{(L-1)} W_{ji}^{(L)} + b_i^{(L)}\right)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

$$\sum_{j} a_{j}^{(0)} W_{j1}^{(1)} = 0 + 0 + 0 + (1 \times (-3.8)) + 0 + 0 + (1 \times (-0.3)) + 0 + 0 = -4.1$$

$$\sum_{j} a_{j}^{(0)} W_{j1}^{(1)} + b_{1}^{(1)} = -4.1 + (-0.3) = -4.4$$

$$a_{1}^{(1)} = g\left(\sum_{j} a_{j}^{(0)} W_{j1}^{(1)} + b_{1}^{(1)}\right) = g(-4.4) = \frac{1}{1 + e^{-(-4.4)}} = 0.012$$
 Output from layer 1, neuron 1

Now let's find the output from layer 1, neuron 2:

$$\begin{array}{c} 5 & 0 \\ 5 & 0 \\ 7 & 0 \\$$

$$\begin{aligned} a_i^{(L)} &= g\left(\sum_j a_j^{(L-1)} W_{ji}^{(L)} + b_i^{(L)}\right) \\ g(z) &= \frac{1}{1 + e^{-z}} \end{aligned}$$

$$\sum_{j} a_{j}^{(0)} W_{j2}^{(1)} = ?$$

$$\sum_{j} a_{j}^{(0)} W_{j2}^{(1)} + b_{2}^{(1)} = ?$$

$$a_{2}^{(1)} = g\left(\sum_{j} a_{j}^{(0)} W_{j2}^{(1)} + b_{2}^{(1)}\right) = ?$$

Now let's find the output from layer 1, neuron 2:

$$\begin{aligned} a_i^{(L)} &= g\left(\sum_j a_j^{(L-1)} W_{ji}^{(L)} + b_i^{(L)}\right) \\ g(z) &= \frac{1}{1 + e^{-z}} \end{aligned}$$

$$\sum_{j} a_{j}^{(0)} W_{j2}^{(1)} = 7.8$$
$$\sum_{j} a_{j}^{(0)} W_{j2}^{(1)} + b_{2}^{(1)} = 0$$
$$a_{2}^{(1)} = g\left(\sum_{j} a_{j}^{(0)} W_{j2}^{(1)} + b_{2}^{(1)}\right) = 0.5$$

Finally, let's find the output from layer 2, neuron 1:

$$a_i^{(L)} = g\left(\sum_j a_j^{(L-1)} W_{ji}^{(L)} + b_i^{(L)}\right)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

$$\sum_{j} a_{j}^{(1)} W_{j1}^{(2)} = (0.012 \times (-3.3)) + (0.5 \times (-3.6)) = -1.8$$
$$\sum_{j} a_{j}^{(1)} W_{j1}^{(2)} + b_{1}^{(2)} = -1.8 + 3.9 = 2.1$$
$$a_{1}^{(2)} = g\left(\sum_{j} a_{j}^{(1)} W_{j1}^{(2)} + b_{1}^{(2)}\right) = g(2.1) = \frac{1}{1 + e^{-2.1}} = 0.89$$

Finally, let's find the output from layer 2, neuron 1:

$$a_i^{(L)} = g\left(\sum_j a_j^{(L-1)} W_{ji}^{(L)} + b_i^{(L)}\right)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

$$\sum_{j} a_{j}^{(1)} W_{j1}^{(2)} = (0.012 \times (-3.3)) + (0.5 \times (-3.6)) = -1.8$$

$$\sum_{j} a_{j}^{(1)} W_{j1}^{(2)} + b_{1}^{(2)} = -1.8 + 3.9 = 2.1$$

$$a_{1}^{(2)} = g\left(\sum_{j} a_{j}^{(1)} W_{j1}^{(2)} + b_{1}^{(2)}\right) = g(2.1) = \frac{1}{1 + e^{-2.1}} = 0.89$$

$$\bigcup_{j = 1}^{1} 0.89$$

$$\bigcup_{j = 1}^{1} 1 + e^{-2.1} = 0.89$$

What does this output mean?

Recall that our goal is to identify whether an image contains one rectangle

What we found:

Neural network output

We would like our neural network to classify all possible inputs using the same weights and biases.

Python code

Go to:

https://github.com/lhayward/RectangleClassifier

Python code

Exercises:

Find the output from the neural network for the following inputs. In each case, does the output round to 0 or 1? Does the rounded output agree with what you would expect?

- Leave the weights and biases the same but change the input x.
 Can you find an input where the network gives the wrong prediction after rounding?
- Use the input x = np.array([0,0,0,1,0,0,1,0,0]).
 Adjust the weights and biases so that the network output is as close to 1 as possible.

Training neural networks

Our network might give the output:

While the desired answer is: $y_{true}(x) = 1$

We would like to choose the weights W and biases b such that the difference between y(x) and $y_{true}(x)$ is as small as possible.

Training neural networks

We measure how well our network is doing by calculating a cost function

$$C(W,b) = \sum_{x} \left[y(x) - y_{\text{true}}(x) \right]^2.$$

For a perfect classifier, C(W, b) = 0.

We use the cost function to modify the weights and biases:

$$W_{ij}^{(L)} \to W_{ij}^{(L)} - \mathbf{R} \times \frac{\partial C}{\partial W_{ij}^{(L)}}$$
$$b_i^{(L)} \to b_i^{(L)} - \mathbf{R} \times \frac{\partial C}{\partial b_i^{(L)}}$$

R: learning rate

Training neural networks

We measure how well our network is doing by calculating a cost function

$$C(W,b) = \sum_{x} \left[y(x) - y_{\text{true}}(x) \right]^2.$$

For a perfect classifier, C(W, b) = 0.

We use the cost function to modify the weights and biases:

$$\begin{split} W_{ij}^{(L)} &\to W_{ij}^{(L)} - R \times \frac{\partial C}{\partial W_{ij}^{(L)}} \\ b_i^{(L)} &\to b_i^{(L)} - R \times \frac{\partial C}{\partial b_i^{(L)}} \end{split} \text{Calculus!}$$

Many of the inputs are also images:

arXiv:1810.02372

We have seen how artificial neural networks take in input and calculate output:

> For more examples with code, go to: https://www.tensorflow.org/tutorials