If you have it, please take out:

- pen/pencil
- paper
- laptop

Sit close to at least one other person!

Understanding how artificial neural networks understand

Lauren Hayward Sierens
$\hat{\mathbf{D}} \begin{aligned} & \text { PERIMETER } \\ & \text { INSTITUTE }\end{aligned}$

What comes to mind when you hear about "machine learning"?

- Artificial intelligence
- Neural networks
- Deep learning
- Computer science
- Linear algebra
- Calculus

Artificial neural networks

arXiv:1606.02718

Application of neural networks: classifying images

Or, more mathematically:

Input: x

Application of neural networks: classifying images

Example: classifying images of birds and dogs

Application of neural networks: classifying images

Example: identifying whether an image contains one rectangle

Neural networks

Neural networks

Neural network input

Neural network input

How do we translate

into an input for the neural network?

$x=[0,0,0,1,1,0,1,1,0]$

Neural network input

How do we translate

into an input for the neural network?

Hint:
a) $[1,1,1,0,0,0,0,0,0]$
b) $[0,1,1,0,1,1,0,1,1]$
c) $[0,0,0,1,1,1,1,1,1]$
d) $[1,0,0,1,0,0,1,0,0]$

Neural network input

How do we translate

into an input for the neural network?

Hint:
a) $[1,1,1,0,0,0,0,0,0]$
b) $[0,1,1,0,1,1,0,1,1]$
c) $[0,0,0,1,1,1,1,1,1]$
d) $[1,0,0,1,0,0,1,0,0]$

Neural network layers

Neuron output

Neuron output

The output $a_{i}^{(L)}$ is given by

$$
a_{i}^{(L)}=g\left(\sum_{j} a_{j}^{(L-1)} W_{j i}^{(L)}+b_{i}^{(L)}\right) \begin{aligned}
& \text { Linear } \\
& \text { algebra! }
\end{aligned}
$$

where:

- $g(z)=\frac{1}{1+e^{-z}}$
- The variables $W_{j i}^{(L)}$ are called weights
- The variables $b_{i}^{(L)}$ are called biases

Neuron output

Example:

$$
\left.\begin{array}{l}
x=\begin{array}{ll|l}
\hline & & \\
\hline & & \\
& &
\end{array}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array} 0\right.
\end{array}\right]
$$

$$
\begin{gathered}
a_{i}^{(L)}=g\left(\sum_{i} a_{j}^{(L-1)} W_{j i}^{(L)}+b_{i}^{(L)}\right) \\
g(z)=\frac{1}{1+e^{-z}}
\end{gathered}
$$

$$
\sum_{j} a_{j}^{(0)} W_{j 1}^{(1)}=0+0+0+(1 \times(-3.8))+0+0+(1 \times(-0.3))+0+0=-4.1
$$

Neuron output

Example:

$$
\left.\begin{array}{l}
x=\begin{array}{lll}
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{array}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array} 0_{0}\right.
\end{array}\right]
$$

$$
\begin{gathered}
a_{i}^{(L)}=g\left(\sum_{j} a_{j}^{(L-1)} W_{j i}^{(L)}+b_{i}^{(L)}\right) \\
g(z)=\frac{1}{1+e^{-z}}
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{j} a_{j}^{(0)} W_{j 1}^{(1)}=0+0+0+(1 \times(-3.8))+0+0+(1 \times(-0.3))+0+0=-4.1 \\
& \sum_{j} a_{j}^{(0)} W_{j 1}^{(1)}+b_{1}^{(1)}=-4.1+(-0.3)=-4.4
\end{aligned}
$$

Neuron output

Example:

$$
\left.\begin{array}{l}
x=\begin{array}{lll}
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{array}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array} 0_{0}\right.
\end{array}\right]
$$

$$
\begin{gathered}
a_{i}^{(L)}=g\left(\sum_{j} a_{j}^{(L-1)} W_{j i}^{(L)}+b_{i}^{(L)}\right) \\
g(z)=\frac{1}{1+e^{-z}}
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{j} a_{j}^{(0)} W_{j 1}^{(1)}=0+0+0+(1 \times(-3.8))+0+0+(1 \times(-0.3))+0+0=-4.1 \\
& \sum_{j} a_{j}^{(0)} W_{j 1}^{(1)}+b_{1}^{(1)}=-4.1+(-0.3)=-4.4 \\
& a_{1}^{(1)}=g\left(\sum_{j} a_{j}^{(0)} W_{j 1}^{(1)}+b_{1}^{(1)}\right)=g(-4.4)=\frac{1}{1+e^{-(-4.4)}}=0.012
\end{aligned}
$$

Neuron output

Example:

$=\left[\begin{array}{llllllll}0 & 0 & 0 & 1 & 0 & 0 & 1 & 0\end{array}\right]$

$\sum a_{j}^{(0)} W_{j 1}^{(1)}=0+0+0+(1 \times(-3.8))+0+0+(1 \times(-0.3))+0+0=-4.1$
$\sum a_{j}^{(0)} W_{j 1}^{(1)}+b_{1}^{(1)}=-4.1+(-0.3)=-4.4$ $a_{1}^{(1)}=g\left(\sum_{j} a_{j}^{(0)} W_{j 1}^{(1)}+b_{1}^{(1)}\right)=g(-4.4)=\frac{1}{1+e^{-(-4.4)}}=0.012 \begin{aligned} & \text { Output from } \\ & \begin{array}{l}\text { layer } 1, \\ \text { neuron } 1\end{array}\end{aligned}$

Neuron output

Example:

$=\left[\begin{array}{llllllll}0 & 0 & 0 & 1 & 0 & 0 & 1 & 0\end{array}\right]$

$\sum a_{j}^{(0)} W_{j 1}^{(1)}=0+0+0+(1 \times(-3.8))+0+0+(1 \times(-0.3))+0+0=-4.1$
$\sum a_{j}^{(0)} W_{j 1}^{(1)}+b_{1}^{(1)}=-4.1+(-0.3)=-4.4$ $a_{1}^{(1)}=g\left(\sum_{j} a_{j}^{(0)} W_{j 1}^{(1)}+b_{1}^{(1)}\right)=g(-4.4)=\frac{1}{1+e^{-(-4.4)}}=0.012 \begin{aligned} & \text { Output from } \\ & \begin{array}{l}\text { layer } 1, \\ \text { neuron } 1\end{array}\end{aligned}$

Neuron outputs

Neuron outputs

Neuron output

Now let's find the output from layer 1, neuron 2:

$$
\begin{gathered}
a_{i}^{(L)}=g\left(\sum_{j} a_{j}^{(L-1)} W_{j i}^{(L)}+b_{i}^{(L)}\right) \\
g(z)=\frac{1}{1+e^{-z}}
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{j} a_{j}^{(0)} W_{j 2}^{(1)}=? \\
& \sum_{j} a_{j}^{(0)} W_{j 2}^{(1)}+b_{2}^{(1)}=? \\
& a_{2}^{(1)}=g\left(\sum_{j} a_{j}^{(0)} W_{j 2}^{(1)}+b_{2}^{(1)}\right)=?
\end{aligned}
$$

Neuron output

Now let's find the output from layer 1, neuron 2:

$$
\begin{gathered}
a_{i}^{(L)}=g\left(\sum_{j} a_{j}^{(L-1)} W_{j i}^{(L)}+b_{i}^{(L)}\right) \\
g(z)=\frac{1}{1+e^{-z}}
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{j} a_{j}^{(0)} W_{j 2}^{(1)}=7.8 \\
& \sum_{j} a_{j}^{(0)} W_{j 2}^{(1)}+b_{2}^{(1)}=0 \\
& a_{2}^{(1)}=g\left(\sum_{j} a_{j}^{(0)} W_{j 2}^{(1)}+b_{2}^{(1)}\right)=0.5
\end{aligned}
$$

Neuron outputs

Neuron outputs

Neuron output

Finally, let's find the output from layer 2, neuron 1:

Previous layer output: $a^{(1)}=\left[\begin{array}{ll}0.012 & 0.5\end{array}\right]$

$$
W^{(2)}=\left[\begin{array}{l}
-3.3 \\
-3.6
\end{array}\right] \quad b^{(2)}=[3.9]
$$

$$
\begin{gathered}
a_{i}^{(L)}=g\left(\sum_{j} a_{j}^{(L-1)} W_{j i}^{(L)}+b_{i}^{(L)}\right) \\
g(z)=\frac{1}{1+e^{-z}}
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{j} a_{j}^{(1)} W_{j 1}^{(2)}=(0.012 \times(-3.3))+(0.5 \times(-3.6))=-1.8 \\
& \sum_{j} a_{j}^{(1)} W_{j 1}^{(2)}+b_{1}^{(2)}=-1.8+3.9=2.1 \\
& a_{1}^{(2)}=g\left(\sum_{j} a_{j}^{(1)} W_{j 1}^{(2)}+b_{1}^{(2)}\right)=g(2.1)=\frac{1}{1+e^{-2.1}}=0.89
\end{aligned}
$$

Neuron output

```
Finally, let's find the output from
layer 2, neuron 1:
```


$$
\begin{aligned}
& \sum_{j} a_{j}^{(1)} W_{j 1}^{(2)}=(0.012 \times(-3.3))+(0.5 \times(-3.6))=-1.8 \\
& \sum_{j} a_{j}^{(1)} W_{j 1}^{(2)}+b_{1}^{(2)}=-1.8+3.9=2.1 \\
& a_{1}^{(2)}=g\left(\sum_{j} a_{j}^{(1)} W_{j 1}^{(2)}+b_{1}^{(2)}\right)=g(2.1)=\frac{1}{1+e^{-2.1}}=0.89 \begin{array}{c}
\text { Output from } \\
\text { layer 2, } \\
\text { neuron 1 }
\end{array}
\end{aligned}
$$

Neural network output

What does this output mean?

Neural network output

Recall that our goal is to identify whether an image contains one rectangle

Goal:

What we found:

Neural network output

We would like our neural network to classify all possible inputs using the same weights and biases.

Python code

Go to:

https://github.com/lhayward/RectangleClassifier

国 README.md

RectangleClassifier_Example.ipynb:

- Implements a neural network to classify whether or not a 3×3 image contains a single rectangle.
- Launch noteboc :8 launch binder

Click here!

Python code

Exercises:

, Find the output from the neural network for the following inputs. In each case, does the output round to 0 or 1? Does the rounded output agree with what you would expect?

- Leave the weights and biases the same but change the input x. Can you find an input where the network gives the wrong prediction after rounding?
- Use the input $x=n p$.array $([0,0,0,1,0,0,1,0,0])$. Adjust the weights and biases so that the network output is as close to 1 as possible.

Training neural networks

Our network might give the output:

While the desired answer is: $\quad y \operatorname{true}(x)=1$

We would like to choose the weights W and biases b such that the difference between $y(x)$ and y true (x) is as small as possible.

Training neural networks

We measure how well our network is doing by calculating a cost function

$$
C(W, b)=\sum_{x}\left[y(x)-y_{\text {true }}(x)\right]^{2}
$$

For a perfect classifier, $C(W, b)=0$.

We use the cost function to modify the weights and biases:

$$
\begin{array}{rlr}
W_{i j}^{(L)} & \rightarrow W_{i j}^{(L)}-R \times \frac{\partial C}{\partial W_{i j}^{(L)}} & R: \text { learning rate } \\
b_{i}^{(L)} & \rightarrow b_{i}^{(L)}-R \times \frac{\partial C}{\partial b_{i}^{(L)}} &
\end{array}
$$

Training neural networks

We measure how well our network is doing by calculating a cost function

$$
C(W, b)=\sum_{x}\left[y(x)-y_{\text {true }}(x)\right]^{2}
$$

For a perfect classifier, $C(W, b)=0$.

We use the cost function to modify the weights and biases:

$$
\begin{aligned}
W_{i j}^{(L)} & \rightarrow W_{i j}^{(L)}-R \times \frac{\partial C}{\partial W_{i j}^{(L)}} \text { Calculus! } \\
b_{i}^{(L)} & \rightarrow b_{i}^{(L)}-R \times \frac{\partial C}{\partial b_{i}^{(L)}}
\end{aligned}
$$

Applications in physics

Many of the inputs are also images:

arXiv:1810.02372

Summary

- We have seen how artificial neural networks take in input and calculate output:

- For more examples with code, go to:
https://www.tensorflow.org/tutorials

