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Typical electronic structure of correlated materials:
Partially filled narrow band (3d or 4f) crossing the Fermi level

Slight change of parameters can induce large change in materials properties.
E.g., by slight distortion or pressure the ratio of U/bandwidth changes and 

the materials can undergo phase transitions (metal-insulator).
competition between kinetic energy and U.

The main action
takes place here

E (eV)

many configurations 
close in energy
strong correlations
one-particle description
can be problematic

SrVO3

La/YTiO3

LDA DOS



Pavarini, Biermann, Poteryaev, Lichtenstein, Georges, and Andersen, PRL  92, 176403 (2004)

In LDA
These materials share very similar 
electronic structure and they are all metals.
LDA+U all insulators

Experimentally
SrVO3 and CaVO3 are metals
LaTiO3 and YTiO3 are insulators

Correlated metals

Insulators

The importance of going beyond the one-particle theory



Another example: Pentacene molecular crystal

Narrow bands

Tiago, Northrup, and Louie, PRB67, 115212 (2003)
5 benzene
rings

66 HC
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Focus on the correlated bands Mappping to a Hubbard model:
Competition between kinetic energy and U (itineracy and localisation)

satellite

QP

U/D>>1

Lower
Hubbard band

Upper
Hubbard band

When U is small 
it is preferable for 
the electrons to 
delocalise metal

When U is large it is costly 
for the electrons to hop

insulator

For intermediate U it is a mixture of localised
and delocalised electrons (correlated metals)
Difficult to treat within one-particle theory
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The Hubbard model 

Many-electron Hamiltonian is too complicated to be solved directly.

J. Hubbard, Proc. Roy. Soc. A276, 238 (1963)

Is there any formal way of deriving the Hubbard model
from the many-electron Hamiltonian?

What is the Hubbard U?

How do we calculate the Hubbard U?
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Focus on the correlated bands



d subspace

r subspace

effU Σ,

Full one-particle
Hilbert space

deffddd GggG Σ+=

1)( =Σ−− deffdd Ghω

Downfolded self-energy

What are 
?, effU Σ



Step 1:  The Green Functions
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Describes the coupling
between the d and r 
subspaces
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Step 2:  The Equations of Motion for       and dG rdG

Definition of Σ~
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Step 3:  Eliminate          to obtain an effective equation for rdG dG
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A closed set of equations for the 
downfolded self-energy.
“Energy-dependent Hubbard model”
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PRL 102, 176402 (2009)
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Conventional 
Hubbard model

Decouple the
d and r subspaces

After some algebra …

bare Coulomb interaction=v

Furnishes a formal definition of U.



•A starting point for construction of models and 
a general procedure for combining first-principles and model approaches. 

•Inclusion of vertex corrections (beyond GW) for the chosen subspace only.

•A possible route for simplifying GW calculations by treating the chosen
subspace accurately and the rest of the Hilbert space in an approximate way.

Possible applications



Related works on the Hubbard U

Seminal work on U (constrained LDA):
O Gunnarsson, OK Andersen, O Jepsen, J Zaanen, PRB 39, 1708 (1989)
VI Anisimov and O Gunnarsson, PRB 43, 7570 (1991)

Improvement on constrained LDA
M Cococcioni and S de Gironcoli, PRB 71, 035105 (2005)
Nakamura et al (PRB 2005)

Random-Phase Approximation (RPA):
M Springer and FA, PRB 57, 4364 (1998)
T Kotani, J. Phys.: Condens. Matter 12, 2413 (2000)

Constrained RPA (cRPA)
PRB 70, 195104 (2004)
PRB 80, 155134 (2009) for entangled bands 
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Constrained RPA (cRPA): A method for calculating the Hubbard U

Phys. Rev. B  70, 195104 (2004)

rd PPP +=

Advantages:
•Full matrix U
•Energy-dependent U
•Onsite and offsite U
•U(r,r’;ω) is basis-independent:
Can use any band-structure method

dP

rP

μ

Calculate U of the narrow band
(the d subspace)

Polarisation:

is not the same as
the polarisation of the r-subspace only.

It includes transitions between 
the d- and r-subspaces.

rP

r

d

Fully screened interaction
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Full system

Correlated bands

dr PPP −= is not the same as
the polarisation of the r-subspace only.

It includes transitions between 
the d- and r-subspaces.
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gg tt 22 →

allt g →2

allt g →2

ggp etO ,22 →

allt g →2

allO p →2

bare
interaction

Controlling the screening channels:
U as a function of eliminated transitions

SrVO3

U=3.5 eV

gt2

ge
The O2p plays a crucial role
in determining U

PRB 74, 125106 (2006)



Constrained LDA

Hopping from and to
3d orbitals is cut off

Super Cell

Transition metal or
rare earth atom

“impurity”

Change the 3d charge on the impurity, keeping the system neutral,
do a self-consistent calculation

and calculate the change in the 3d energy level U(3d).



Nakamura, Arita, Imada, J. Phys. Soc. Jpn. 77, 093711 (2008)

Iron-based superconductors

Fe 3d bands



Nakamura, Arita, Imada, J. Phys. Soc. Jpn. 77, 093711 (2008)

•Large orbital dependence of U.
•U is considerably smaller than the values (~4 eV) used in some model studies.

Recent comprehensive calculations by Miyake et al
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The dielectric constant is anisotropic.
U is almost isotropic and long ranged.
Nearest-neighbour U/onsite U ~0.45Maximally localised Wannier orbitals of

22 )()( NCSCuBEDTTF−κ

Exp:     metal                       insulator

BEDT-TTF organic conductors

5/1~ rU



Maddox et al
PRL  (2005)

MnO



Jan Tomczak et al (to appear in PRB)
U of MnO as a function of pressure

U tends to increase with pressure.



1D chain model: U as a function of pressure



Hund’s coupling J of AF dB1 MnO (d-only model)

In contrast to U, J changes little with pressure

Energy in eV



0 2 4 6 8 10 12 14

E (eV)

0

2

4

6

8

10

12

14

16

18

U
 (

eV
)

Ce α
Fe paramagnetic
Gd
Cu
V
Ni paramagnetic

Energy dependence of U.
U can vary significantly within the band width of the chosen subspace

Gd

Ce



Gd

4f



Self-consistent LDA+U:
U is updated using constrained RPA (cRPA)



cRPA for entangled bands

Disentangled 3d band structure from
maximally localised Wannier orbitals

(using the procedure of
Souza, Marzari and Vanderbilt)

In many materials the correlated bands
of interest are entangled with other more

extended bands.

Paramagnetic nickel

PRB 80, 155134 (2009)

Approximation: The off-diagonal
elements are set to zero



Previous: Phys. Rev. B 77, 085122 (2008)
Present: PRB 80, 155134 (2009)

The difference arises from the choice of 
the d-subspace forming the Hubbard model
and the criteria for Pd. 

Hubbard U for the 3d series

Fully screened interaction W of
the 3d series



J

U’

Nearest-neighbour U and exchange J



J
Onsite exchange J of Fe

J from W
J from U

Screening effects on J are not negligible

Bare atomic
value ~0.75 eV



Summary

Constrained RPA (cRPA):

-Allows for systematic determination of the Hubbard U
-U(r,r’;ω) is basis independent

Downfolded self-energy of many-electron systems:
Formal expression for the Hubbard U
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