DMFT from a quantum chemistry perspective

Garnet Kin-Lic Chan

Dominika Zgid

Department of Chemistry and
Chemical Biology

Cornell University

Four views of electronic structure

- Chemistry energy scale is kT
- Culture

Fewer big problems, many small problems
Method developers are not generally method users

Some levels
All configurations, e.g. ED
Problem specific interactions

Convergent, structured wf ansatz
All interactions

Weakly correlated quantum chemistry

Very accurate

Single water molecule vibrational spectrum

Errors from expt

in 1/cm, micro eV!

Very large

16 DNA base pairs

2nd order PT total energy 1 month / 1 cpu

Tennyson, Science 299, 539

Ochsenfeld, J. Chem. Phys, 130, 064107

Strongly correlated molecular quantum chemistry

- e-e Coulomb energy ~
 kinetic energy
- Poor atomic overlap
 - TM d orbitals
 - stretched bonds
- Excited states
- Low-dimensional electronic materials

Strongly correlated QC in action: [Cu₂O₂]²⁺ isomerisation

O 2p/3p

decoupling approximation

Chan et al, J. Chem. Phys. 132, 024105

DMFT for quantum chemistry

- QC approaches correlation from local perspective
- DMFT provides natural bridge to extended systems
- Correlated solids
- Molecules on surfaces
- Spectroscopy and catalysis

Quantum chemistry for DMFT

- Experience with solvers
- (usually Hamiltonian formulation)
- Realistic interactions (with different philosophy)

Diagonalization

Flexible
hierarchy to
restrict Hilbert
space e.g.
RASCI

Resummed PT

Hierarchy to include more diagrams (TI PT) e.g. CC theory

Variational wavefunctions

e.g. MPS, Jastrow-det

Use with real interactions e.g. ab-initio DMRG

- 1. Restricted active space (diagonalisation) solver
- 2. Ab-initio DMFT, chemistry style

A simple QC solver

 exponential # configurations, but wavefunctions in 3 regimes are qualitatively simple

Active space

- "Optimally hybridized" orbitals
 (as function of t, U) -- active space
- Strong correlation method (e.g. ED) in small active space
- e.g. SIAM g.s. minimally described within 2 orbital active space

Optimise GS w.r.t.

- 1. Unitary transformation
- 2. Coefficients in ED

Restricted active space CI

- Although external orbitals less important, still want to include partially
- Restrict types of configurations

 Well-known flaws (extensivity) but cheap, cheerful, and systematically improvable

Single impurity Anderson model

1 impurity, 9 bath orbitals

2 orbital active space; 2p/2h external space

$$U=1, v=1/2, t=1$$

$$U=4, v=1/2, t=1$$

SIAM cont'd

$$U=8, v=2, t=1$$

increasing lattice size

Multi-impurity Anderson model

4 impurity, 8 bath orbitals

$$U=4, v=1/2, t=1$$

Multi-impurity cont'd

$$U=8, v=2, t=1$$

increasing lattice size

Larger clusters

What do these results mean?

Ab-initio QC DMFT

LDA+DMFT

- 1. DMFT: local orbitals
- 2. LDA: all the rest
- 3. Fit screened interactions
- 4. Correct for double counting

QC+DMFT wishlist

- 1. Always diagrammatic controlled: no DFT no double counting
- 2. Local hamiltonian VYES all interactions
- Local hamiltonian unscreened, screening via v YES but v. small basis
- 4. Long range Coulomb and screening Only HF

Diamond

	Gap/eV
LDA	4.03
B3LYP	5.80
HF	12.17
GW	5.60

- Wide band-gap
- Correlations local

Stoll, PRB 46, 6700 "method of increments"

Cohesive energy LDA error 0.08 a.u.

X 4 0.130 a.u.

- But challenging for DMFT?
- Multiorbital: 2 C per cell, 8 valence orbitals
- Strong hybridisation

<mark>մ</mark>.Ա.

<mark>ւ</mark>Ա.

Our setup

- Hamiltonian formulation (explicit bath)
- No self-consistency (yet)

Non-orthogonal Gaussian basis (HF basis)

Exact quartic unscreened interactions

Diamond local spectral functions

DMFT spectral functions

HF/STO-3G/8x8x8

DMFT

CISD solver

Cluster: 2C unit cell

8 orbitals

FCC Nickel

- Classic problem for DMFT: 6eV satellite
- HF shows more basic problem: large splitting of t_{2g} and e_g!
- HF U ~ 20 eV, DMFT U ~ 3 eV

Conclusions

- DMFT provides a natural way to extend QC techniques to extended problems
- 2. QC provides new solvers for DMFT and technology to handle realistic interactions
- 3. Look forward to fruitful exchange of ideas!