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New phenomena at oxide interfaces (3 topics)

What are the new results?
• global symmetry can be controlled by architecture Warusawithana

d i  SL t  bt i   ti l t iti  ( ) Zh• design SL to obtain new optical transitions, σ(ω) Zhai
• superconductivity with e-h antisymmetry Davidson

Global symmetry:Global symmetry:
Make a digital superlattice out of 3 dielectric phases and use SL 
architecture that breaks inversion symmetry

 dielectric has permanent polarization and finite χ(2)  dielectric has permanent polarization and finite χ( ) .

New electronic transitions
Digital superlattice to mix bands at interface

  ti l t iti  b t  it  t t new optical transitions between composite states.

Modified superconductivity at interface (unexpected)
a-axis interface between YBCO and CaTiO3 (NIS tunnel jct)f ( j )

 crystalline interface causes DoS measured by tunneling to 
have broken e-h symmetry at interface (not like BCS)



N d i  di l i
topic 1

summary

Nanostructured asymmetric dielectrics

summary

Lattice strain distorts bonds at heterointerfaces
asymmetric supercell  asymmetric strain “field”asymmetric supercell  asymmetric strain field

Supercells with broken inversion symmetry lead to 
self-poled materials (similar to ferroelectricity  but )self poled materials (similar to ferroelectricity, but…)

asymm. strain field acts like effective bias field, Eeff
permanent polarization, with no two state switching

Strain “proximity effect” extends about 2 uc

University of Illinois



Electro-Optic Frequency Shifter
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D. A. Farías and J. N. Eckstein. “Coupled-Mode Analysis of an Electro-optic Frequency 
Shifter,” IEEE J. of Quant. Elect.  Vol 39. No 2. , pp. 358-363, Feb. 2003. 



Experimental Results EOFSExperimental Results EOFS
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What you would like for non-linear modulators, etc…

P For non-linear optical and 
other field tuning 
applications would prefer a applications would prefer a 
characteristic like this.

St bl  i l  l ti
E

Stable, single solution
can’t de-pole

Permanently polarized
dielectric with big (2)

Use molecular 
nanostructuring to make 
s h  t i l (MBE)such a material (MBE)
(once you figure out what matters!)

University of Illinois



Artificial structures
using ALL-MBE to synthesize materials and heterostructures not found in natureg y

Controlling material properties via 
epitaxial strain

anisotropy energy surface
(La0.7Ca0.3MnO3 on SrTiO3 substrate)

p

Tensile strain-induced magnetic 
anisotropy in magnetic oxide
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  broken symmetry throughout film  favors one polarization
•  permits stable operation nearer to Curie temperature
•  obtain larger response at zero bias

University of Illinois



Electrodynamic properties of atomically layered “meta-materials”

A t i  di l t i  l ttiAsymmetric dielectric superlattices
broken inversion symmetry
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bond valence sum calculationbond valence sum calculation
Mike O’Keefe  (ASU)

bond
polarization

Z-contrast STEM image   Hao Chen UIUC
Jim Zuo   UIUC



Atomic Layer-by-Layer 
Molecular Beam Epitaxy
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digital superlattice
BTO-STO-CTO Behaves as though 
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University of Illinois

heterointerfacial strain  bond distortion  polarization
This says that the polarization extends ~ 2uc away from int



N d i  di l i
topic 1

summary

Nanostructured asymmetric dielectrics

summary

Lattice strain distorts bonds at heterointerfaces
asymmetric supercell  asymmetric strain “field”asymmetric supercell  asymmetric strain field

Supercells with broken inversion symmetry lead to 
self-poled materials (paraelectric)self poled materials (paraelectric)

asymm. strain field acts like effective bias field, Eeff
permanent polarization, with no two state switching

Strain “proximity effect” extends about 2 uc

University of Illinois



New optical absorption bands in digital 
topic 2

summary

New optical absorption bands in digital 
superlattices

summary

•Short period digital superlattices of perovskite phases 
having different TMs can be accurately grownhaving different TMs can be accurately grown.

•New optical transitions can be created by placing different 
molecular layers that electronically hybridize next to each y y y
other

•Electron transitions from source state to destination state
S  t t  i  i l  f   l l  l•Source state is mainly from one molecular layer

•Destination state is mainly from other molecular layer

•Measure heterojunction band line-upj p



New optical absorption bands in atomically layered 
digital superlattices

Combine Jahn Teller - Mott Hubbard insulator with band insulator
band line-up

Epitaxial LaMnO3 thin film

band J-T Mott
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New optical absorption bands in atomically layered 
digital superlattices

Combine Jahn Teller - Mott Hubbard insulator with band insulator
band line-up

band J-T Mott

~1 5 eV

Sr
Ti

Sr
1.5 eV

La
M

LMO is an A-type antiferromagnet

Mn
La

JEOL 2200FS
with probe forming yp g

below 140 K, FM planes stacked AFM-ly

University of Illinois

with probe forming
Cs Corrector J-M Zuo group

Amish Shah



New bandstructure in short period 
superlatticessuperlatticesKey: SrTiO3
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 Like GaAs/AlAs minibands, but here the quantum mechanically blended phases are very 
different:  STO is band insulator while LMO is insulator due to e-ph and e-e interactons
 Jahn Teller and Mott Hubbard

 1.5 eV peak (MH-gap) blue shifts in shorter period SL1.5 eV peak (MH gap) blue shifts in shorter period SL

 New spectral weight emerges between 1 and 3 eV, and SW lost below 1.7 eV.  

University of Illinois



Oxygen EELS shows similar spectra in Ti and Mn layers
Further evidence that the metal wavefunctions appreciably 
hybridize with oxygen

Spatially indirect or hybridized interface band transition at 

LMO STO 2x2 Superlattice
oxygen K-edge EELS

electron causes transition from 1s to hybridized 2P spectral weight

Spatially indirect or hybridized interface band transition at 
2.4 eV (MnTi)
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Band line-up and electronic structure
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New optical absorption bands in digital 
l i

summary

superlattices

summary

•Short period digital superlattices of perovskite phases 
having different TMs can be accurately grownhaving different TMs can be accurately grown.

•New optical transitions can be created by placing molecular 
layers that electronically hybridize next to each othery y y

•Electron transitions from source state to destination state
•Source state is mainly from one molecular layer
D ti ti  t t  i  i l  f  th  l l  l•Destination state is mainly from other molecular layer

•Measure heterojunction band line-up



U l i ti l  D S t 
topic 3

Unusual quasiparticle DoS at 
cuprate/insulator interfaces (NIS tunnel junctions)

(not c axis cuprate interfaces  rather they are a axis)

• If the interface causes a k-state to scatter to 
sit  si s f d th  SC is h d

(not c-axis cuprate interfaces, rather they are a-axis)

opposite signs of dx2-y2 then SC is quenched
– At the surface a normal 2-D band is formed confined by the 

gap  the Andreev bound state
Th  l t  t ll  i  i   th  t t  d thi  – These electrons eventually pair in some other state and this 
is unique (expt. L.H. Greene group, theory J Sauls group)

University of Illinois



interface scattering at amorphous barriers!

Si l  t l h  b i
a-axis NIS TJ with amorphous barrier

disordered interface

Single crystal vs amorphous barriers

• non-specular reflection at amorphous 
barriers 0.002
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47 K
10 K

• amorphous barrier devices show ZBCP 
DOS at surface similar to a+b direction 
devics:  ZBCP which splits at lower 0.001

0.0015
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4 K

temperatures (LH Greene)
• G(V,T)/G(V,Tc) is particle/hole symmetric 

here  0.00026
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U l i ti l  D S t Unusual quasiparticle DoS at 
cuprate/insulator interfaces (NIS tunnel junctions)

(not c axis cuprate interfaces  rather they are a axis)

• If the interface causes a k-state to scatter to 
opposite signs of d then SC is quenched

(not c-axis cuprate interfaces, rather they are a-axis)

opposite signs of dx2-y2 then SC is quenched
– At the surface a normal 2-D band is formed confined by the 

gap  the Andreev bound state
– These electrons eventually pair in some other state and this – These electrons eventually pair in some other state and this 

is unique (expt. L.H. Greene group, theory J Sauls group)

• If the interface is specular, and reflections don’t mix f f p , f m
+ with -, then we find that the superconductivity at 
the surface doesn’t have particle-hole symmetry 
(violates the core of BCS)( olates the core of B S)

University of Illinois



new electronic structure emerges 
because f the specular interfacebecause of the specular interface

Nb SIS JJ

• In bulk, approximate e-h symmetry (BCS)
– c.f. Renner, Davis, Yazdani, others (STM of 2212)

At l  (100) f   fi d thi  i  ll b k !• At specular (100) surface we find this is really broken!
• Is it a superconducting state at interface?

It only appears below Tc– It only appears below Tc

• How deep does it extend?
I  it f l f  i i   l t i  d • Is it useful for engineering new electronic ground 
states that may have interesting properties?

• No theory yetNo theory yet.
University of Illinois



N-I-S tunnel junction fabricationN-I-S tunnel junction fabrication

Trilayer film growth Junction process

or amorphous AlOx
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AFM Image of a-axis-YBCO

RMS Roughness 
= 0 489 nm= 0.489 nm

University of Illinois



NIS tunnel junction
RHEED oscillations during crystalline barrier heteroepitaxy

0.6 ml CTO

1 ml CTO
2 ml CTO

4ml CTO4ml CTO

50

55

60

y 
(a

rb
.)

CTO
monolayer 1 2 3 4 5a-axis YBCO

35

40

45

la
r I

nt
en

si
ty

5 ml CTO

20

25

30

0 80 160 240 320 400 480 560 640

S
pe

cu
l

0 80 160 240 320 400 480 560 640
Frame Number

University of Illinois



spectroscopy of electronic structure
broken particle-hole symmetry
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87K a-axis YBCO NIS tunnel junction Offset parabola due 
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Normalize data to parabola above Tc
Tc=87K
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Magnetic field parallel to junction
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Similar results in underdoped cuprate



new electronic structure emerges 
because f the specular interfacebecause of the specular interface

• In bulk  approximate e h symmetry• In bulk, approximate e-h symmetry
• At specular 100 surface this is really broken

– For all carrier dopings
• Anti-symmetry tied to the Fermi energy

– Not due to a single particle cause (Schottky barrier)
– Due to interacting electronsg

• How deep does it extend?
• Is it useful for engineering new electronic ground 

t t  th t  h  b tt  ti ?states that may have better properties?
– SC is modified, can this be used?

• No theory yet (not that I know of).y y ( )

University of Illinois



Summary
Oxide interfaces and superlattices (3 topics)

What are the new results?
• global symmetry can be changed Warusawithana

d i  SL t  bt i   ti l t iti  ( ) Zh• design SL to obtain new optical transitions, σ(ω) Zhai
• emergence of modified collective order Davidson

Global symmetry:Global symmetry:
Make a digital superlattice out of 3 dielectric phases and use SL 
architecture that breaks inversion symmetry

 dielectric has permanent polarization and finite χ(2)  dielectric has permanent polarization and finite χ( ) .

New electronic transitions
Digital superlattice to mix bands at interface

  ti l t iti  b t  it  t t new optical transitions between composite states.

Modified superconductivity at interface (unexpected)
a-axis interface between YBCO and CaTiO3 (NIS tunnel jct)f ( j )

 crystalline interface causes DoS measured by tunneling to 
have broken e-h symmetry at interface (not like BCS)


