New collective and single particle phenomena at oxide interfaces and digital superlattices

James N. Eckstein, 1,2

¹Department of Physics, Univ. of Illinois, Urbana, IL Fredrick Seitz Materials Research Laboratory, Univ. of Illinois, Urbana, IL

Xiaofang Zhai, Maitri Warusawithana, Bruce Davidson, Jian-Min Zuo, Amish Shah,

¹University of Science and Technology of China, Hefei, China ²Department of Physics, Florida State Univ. ³TASC INFM, Trieste, Italy

tment of Materials Science and Engineering, Univ. of Illinois, Urb<mark>ana, IL</mark>

Supported by Dept of Energy - Basic Energy Sciences

New phenomena at oxide interfaces (3 topics)

What are the new results?

global symmetry can be controlled by architecture

Warusawithana

• design SL to obtain new optical transitions, $\sigma(\omega)$

Zhai

superconductivity with e-h antisymmetry

Davidson

Global symmetry:

Make a digital superlattice out of 3 dielectric phases and use SL architecture that breaks inversion symmetry

 \rightarrow dielectric has permanent polarization and finite $\chi^{(2)}$.

New electronic transitions

Digital superlattice to mix bands at interface

→ new optical transitions between composite states.

Modified superconductivity at interface (unexpected)

a-axis interface between YBCO and CaTiO3 (NIS tunnel jct)

→ crystalline interface causes DoS measured by tunneling to have broken e-h symmetry at interface (not like BCS)

topic 1

Nanostructured asymmetric dielectrics

summary

Lattice strain distorts bonds at heterointerfaces asymmetric supercell → asymmetric strain "field"

Supercells with broken inversion symmetry lead to self-poled materials (similar to ferroelectricity, but...) asymm. strain field acts like effective bias field, $E_{\rm eff}$ permanent polarization, with no two state switching

Strain "proximity effect" extends about 2 uc

Electro-Optic Frequency Shifter

$$E_u = E_0 \sin(ky - wt)$$

Index of refraction experiences a dynamic change given by

$$\delta n = -\frac{1}{2}n_0^3 r_c E_{\mu}$$

D. A. Farías and J. N. Eckstein. "Coupled-Mode Analysis of an Electro-optic Frequency Shifter," IEEE J. of Quant. Elect. Vol 39. No 2., pp. 358-363, Feb. 2003.

Experimental Results EOFS

power vs frequency

Frequency Shift vs. Microwave Power

Frequency shifting proportional to P1/2

Experiments done with 927 nm., 20 ps. pulses at a 75.7 MHz repetition rate. Microwave was chosen at the 80^{th} harmonic (6.056 GHz), and powers of 0, 0.3, 1.2, 2.7, 4.8, and 7.5 Watts were applied to the modulator. Freq shifting range = 1 THz **limited by r**_c

D. A. Farías and J. N. Eckstein. IEEE J. of Quant. Elect. Vol 41. No 1., pp. 94-99, Jan 2005.

What you would like for non-linear modulators, etc...

For non-linear optical and other field tuning applications would prefer a characteristic like this.

Stable, single solution can't de-pole

Permanently polarized dielectric with big $\chi^{(2)}$

Use molecular nanostructuring to make such a material (MBE) (once you figure out what matters!)

Artificial structures

using ALL-MBE to synthesize materials and heterostructures not found in nature

Controlling material properties via epitaxial strain

Tensile strain-induced magnetic anisotropy in magnetic oxide

Producing new "materials" by modulated heterostructure growth

Grow crystal using ferroelectric and related phases: stack with structurally broken c-axis inversion symmetry

- broken symmetry throughout film favors one polarization
- permits stable operation nearer to Curie temperature
- obtain larger response at zero bias

 $\begin{array}{l} \text{lattice property,} \\ \text{e.g. strain, } \mathbf{T_{c}} \end{array}$

Electrodynamic properties of atomically layered "meta-materials"

Asymmetric dielectric superlattices broken inversion symmetry

Calculation by Mike O'Keefe ASU Microscopy by J. Zuo and H. Chen UIUC

bond valence sum calculation Mike O'Keefe (ASU)

Z-contrast STEM image

Hao Chen UIUC Jim Zuo UIUC

digital superlattice BTO-STO-CTO

Behaves as though subject to effective 111bias field ~150 kV/cm $P(E=0) = 0.17 C/m^2$

Sign of P depends on + or superlattice architecture

11- ε at 250K

111- εat 180K

1500

422+ appears to be made up of a superposition of a larger (+) curve plus a smaller (-) curve

(+) response comes from stronger CTO/BTO heterointerface, and....

heterointerfacial strain \rightarrow bond distortion \rightarrow polarization This says that the polarization extends \sim 2uc away from int

topic 1

Nanostructured asymmetric dielectrics

summary

Lattice strain distorts bonds at heterointerfaces asymmetric supercell → asymmetric strain "field"

Supercells with broken inversion symmetry lead to self-poled materials (paraelectric)

asymm. strain field acts like effective bias field, $E_{\rm eff}$ permanent polarization, with no two state switching

Strain "proximity effect" extends about 2 uc

topic 2

New optical absorption bands in digital superlattices

summary

- •Short period digital superlattices of perovskite phases having different TMs can be accurately grown.
- New optical transitions can be created by placing different molecular layers that electronically hybridize next to each other
- ·Electron transitions from source state to destination state
 - ·Source state is mainly from one molecular layer
 - ·Destination state is mainly from other molecular layer
- ·Measure heterojunction band line-up

New optical absorption bands in atomically layered digital superlattices

Combine Jahn Teller - Mott Hubbard insulator with band insulator

LMO is an A-type antiferromagnet below 140 K, FM planes stacked AFM-ly

New optical absorption bands in atomically layered digital superlattices

Combine Jahn Teller - Mott Hubbard insulator with band insulator

JEOL 2200FS
with probe forming
Cs Corrector

J-M Zuo group Amish Shah

LMO is an A-type antiferromagnet below 140 K, FM planes stacked AFM-ly

New bandstructure in short period superlattices

- Like GaAs/AlAs minibands, but here the quantum mechanically blended phases are very different: STO is band insulator while LMO is insulator due to e-ph and e-e interactions
 - Jahn Teller and Mott Hubbard
- 1.5 eV peak (MH-gap) blue shifts in shorter period SL
- New spectral weight emerges between 1 and 3 eV, and SW lost below 1.7 eV.

Oxygen EELS shows similar spectra in Ti and Mn layers

Further evidence that the metal wavefunctions appreciably hybridize with oxygen

Spatially indirect or hybridized interface band transition at $2.4 \text{ eV} (Mn \rightarrow Ti)$

Band line-up and electronic structure

2.3 eV peak is Mn e_g^{-1} to Ti t_{2g} for example, Mn d(3x²-r²) to Ti d(xz) oxygen bands nearly align

New optical absorption bands in digital superlattices

summary

- •Short period digital superlattices of perovskite phases having different TMs can be accurately grown.
- New optical transitions can be created by placing molecular layers that electronically hybridize next to each other
- ·Electron transitions from source state to destination state
 - ·Source state is mainly from one molecular layer
 - Destination state is mainly from other molecular layer
- Measure heterojunction band line-up

topic 3

Unusual quasiparticle DoS at cuprate/insulator interfaces (NIS tunnel junctions)

(not c-axis cuprate interfaces, rather they are a-axis)

- If the interface causes a k-state to scatter to opposite signs of d_{x2-y2} then SC is quenched
 - At the surface a normal 2-D band is formed confined by the gap → the Andreev bound state
 - These electrons eventually pair in some other state and this is unique (expt. L.H. Greene group, theory J Sauls group)

interface scattering at amorphous barriers!

Single crystal vs amorphous barriers

- non-specular reflection at amorphous barriers
- amorphous barrier devices show ZBCP DOS at surface similar to a+b direction devics: ZBCP which splits at lower temperatures (LH Greene)
- $G(V,T)/G(V,T_c)$ is particle/hole symmetric here \rightarrow
- everything that follows now depends on single crystal heterostructure

University of Illinois

Unusual quasiparticle DoS at cuprate/insulator interfaces (NIS tunnel junctions)

(not c-axis cuprate interfaces, rather they are a-axis)

- If the interface causes a k-state to scatter to opposite signs of d_{x2-y2} then SC is quenched
 - At the surface a normal 2-D band is formed confined by the gap → the Andreev bound state
 - These electrons eventually pair in some other state and this is unique (expt. L.H. Greene group, theory J Sauls group)
- If the interface is specular, and reflections don't mix + with -, then we find that the superconductivity at the surface doesn't have particle-hole symmetry (violates the core of BCS)

new electronic structure emerges because of the specular interface

- In bulk, approximate e-h symmetry (BCS)
 - c.f. Renner, Davis, Yazdani, others (STM of 2212)

- · At specular (100) surface we find this is really broken!
- Is it a superconducting state at interface?
 - It only appears below Tc
- How deep does it extend?
- Is it useful for engineering new electronic ground states that may have interesting properties?
- No theory yet.

N-I-S tunnel junction fabrication

Rheed image of substrate before growth

Rheed image of YBCO after growth of 2000 Angstroms

AFM Image of *a*-axis-YBCO

NIS tunnel junction RHEED oscillations during crystalline barrier heteroepitaxy

spectroscopy of electronic structure broken particle-hole symmetry

Normalize data to parabola above T_c T_c =87K

Magnetic field parallel to junction

Similar results in underdoped cuprate

new electronic structure emerges because of the specular interface

- In bulk, approximate e-h symmetry
- At specular 100 surface this is really broken
 - For all carrier dopings
- Anti-symmetry tied to the Fermi energy
 - Not due to a single particle cause (Schottky barrier)
 - Due to interacting electrons
- How deep does it extend?
- Is it useful for engineering new electronic ground states that may have better properties?
 - SC is modified, can this be used?
- · No theory yet (not that I know of).

Summary

Oxide interfaces and superlattices (3 topics)

What are the new results?

global symmetry can be changed
 Warusawithana

• design SL to obtain new optical transitions, $\sigma(\omega)$ Zhai

emergence of modified collective order
 Davidson

Global symmetry:

Make a digital superlattice out of 3 dielectric phases and use SL architecture that breaks inversion symmetry

 \rightarrow dielectric has permanent polarization and finite $\chi^{(2)}$.

New electronic transitions

Digital superlattice to mix bands at interface

→ new optical transitions between composite states.

Modified superconductivity at interface (unexpected)

a-axis interface between YBCO and CaTiO3 (NIS tunnel jct)

→ crystalline interface causes DoS measured by tunneling to have broken e-h symmetry at interface (not like BCS)