Disorder and Magnetism: An Examination of Some Spinel and Perovskite Systems

Ram Seshadri

Materials Department and Department of Chemistry and Biochemistry Materials Research Laboratory University of California, Santa Barbara CA 93106

Spinels: The motivation [Brent Melot]

Spinel CuMn₂O₄ [Daniel Shoemaker]

Perovskite (Ba/Sr)(Ti,Nb)O₃ [Katharine Page]

Funding: NSF Career, Institute for Multiscale Materials Studies, UCSB ICMR, NSF GSF to KP.

Spinels: The Motivation

Thanks: A. P. Ramirez, G. Lawes

The spinel structure

Edge-shared AO₆octahedra, with tetrahedral B ions connecting the octahedra.

A-B is the principle magnetic interaction, and it is usually uncompensated antiferromagnetic.

B-B and A-B are also important

The spinel structure

The AB₂O₄ palette: Almost all ions are closed magnetic shells.

Exceptions: Strong B-site tendency: (s)

Α	Magn.	JT	В	Magn.	JT	Aniso.
Mn ²⁺	Υ	N	V3+(s)	Υ	Υ	N/Y
Fe ³⁺	Υ	N	Cr3+(s)	Υ	N	N
Co ²⁺	Y	N	Mn ³⁺ (s)	Υ	Υ	N/Y
Ni ²⁺	Υ	Y	Fe ²⁺	Y	N	Υ
Cu ¹⁺	N	N	Fe ³⁺	Υ	N	Υ
Cu ²⁺	Y	Y	Co ²⁺	Y	N	Υ
Zn ²⁺	N	N	Co ₃ +	N	N	N
Ga ³⁺	N	N	Rh ³⁺ (s)	N	N	N
			Ni ²⁺	Υ	N	N
			Cu ²⁺	Υ	N	N
			A 3+	N	N	N

Insulating oxide spinel magnets: New magnetoelectrics

CoCr₂O₄: Lawes, Melot, Page, Ederer, Proffen, Hayward, Seshadri, *Phys. Rev. B***74** (2006) 024413(1-6).

Mn₃O₄: Tackett, Lawes, Melot, Grossman, Toberer, Seshadri, *Phys. Rev. B***76** (2007) 024409(1-6).

Inhomogeneous magnetism (exchange biasing)

ZnMn₂O₄: Shoemaker, Rodriguez, Seshadri, Abumohor, Proffen, *Phys. Rev. B* **80** (2009) 144422(1-9).

$Zn_{1-x}Co_xCr_2O_4$

Rich magnetic phase diagram obtained by increasing A-B magnetic interactions whilst preserving B-B. "Morphotropic" magnetoelectrcs?

Melot, Drewes, Seshadri, Stoudenmire, Ramirez, *J. Phys. Condensed Matter* **21** (2009) 216007(1-7).

$CoAl_{1-x}Ga_xO_4$: A site-only magnetism

Bergman, Alicea, Gull, Trebst, Balents, Nature Phys. 3 (2007) 487-491.

Melot, Page, Seshadri, Stoudenmire, Balents, Bergman, Proffen, *Phys. Rev. B.* **80** (2009) 104420(1-8).

Shoemaker, Li, Seshadri, J. Am. Chem. Soc. 131 (2009) 11450-11457.

3d transition metal ions susceptible to such distortion include Ti³⁺, Mn³⁺, Cu²⁺ ...

Jahn-Teller effects in LaMnO₃

The example of LaMnO₃ shows the need for *local* probes for understanding cooperative Jahn-Teller: Qiu, Proffen, Mitchell, Billinge, *Phys. Rev. Lett.* **94** (2005) 177203(1–4).

science & engineering

Magnetization acquired under a field of 100 Oe, showing the emergence of a hard ferrimagnet below 40 K.

$$\Theta_{CW} = -107 \text{ K}.$$

A metastable tetragonal spinel with twoJahn-Teller ions. Site mixing as well (close to 30%).

Note the rapid drop in scattering (lab Xray and NPDF, Los Alamos) intensity, even for neutrons.

*I*4₁/amd structure does a good job in describing the data.

RMC modeling of the total scattering G(r), using a between 20,000 and 40,000 atom models; ~6 million steps. Hops between A and B sites allowed.

Note smearing of atom positions and contrast the anisotropic thermal parameters from Rietveld.

science & engineering

RMCProfile: Tucker, Keen, Dove, Goodwin, Hui, *J. Phys.: Condens. Matter* 19 (2007) 335218.

The Rietveld (average) structure fits the G(r) well beyond the secondnear neighbors.

RMC does a much better job all over.

What does a JT active ion do on a tetragonal site?

Cu²⁺O₄tetrahedra appear flattened, with deviations from 109°28′

The explicit atom-byatom description allows bond valence sums to be employed to determine oxidation state, separately on the two sites.

The big surprise: Cu³⁺

The system disproportionates charge to avoid Jahn-Teller:

$$2Cu^{2+} \rightarrow Cu^{1+} + Cu^{3+}$$

KITP 2010

XPS shows up Cu³⁺ as well.

Assignment not previously made.

	Cu			Mn		
charge	tet.	oct.	XPS	tet.	oct.	XPS
1+	0.42 (42%)		47%			
2+	0.20 (20%)	0.10 (10%)	35%	0.34 (17%)		35%
3+		0.28 (28%)	18%	0.05 (2%)	o.8o (44%)	47%
4+					o.72 (36%)	18%

2 sites, 2 cations, and 4 oxidation states.

Charge disproportionation seems to be driven by a tendency to avoid Jahn-Teller states (Cu²⁺ and Mn³⁺ on the tetrahedral site)

Page, Kolodiazhnyi, Proffen, Cheetham, Seshadri, *Phys. Rev. Lett.* 101 (2008) 205502.

SrTiO₃ and BaTiO₃ are band insulators.

Nb⁴⁺-substitution (even small amounts) make SrTiO₃ metallic and even superconducting.

Not so BaTiO₃

Samples from T. Kolodiazhnyi, NIMS, Tsukuba

What does structure tell us? Compare $SrTi_{0.875}Nb_{0.125}O_3$ (STNO) and $BaTi_{0.875}Nb_{0.125}O_3$ (BTNO): 1/8th substitution to aid modeling

Pair distribution functions fit the average structure out to rather long vectors, very well!

The implication is that the average structure is a good approximation of the real structure.

						However
$SrTi_{0.875}Nb_{0.125}O_3$						
	300 K,	$Pm\bar{3}m$	15 K,	I4/mcm		
	Rietveld	PDF	Rietveld	PDF		Cugaet
<i>a</i> (Å)	3.9237(1)	3.9255(1)	5.5391(2)	5.5418(4)	\longrightarrow	Suggest a
c (Å)			7.8312(4)	7.835(1)		tendency to
$U_{\rm iso}$ (Sr)	0.0098(1)	0.0076(2)	0.0053(1)	0.0034(1)		tilt
$U_{\rm iso}$ (Ti/Nb)	0.0056(3)	0.0050(2)	0.0042(3)	0.0028(1)		
$U_{\rm iso}$ (O)	0.0098(1)	0.0084(1)	0.0054(1)	0.0042(1)		
<i>x</i> (O2)			0.2349(1)	0.2350(1)		
Occupancy (Nb)	0.127(2)	1/8	0.123(2)	1/8		
R_w (%)	3.6	7.7	3.8	7.7		
	$BaTi_{0.8}$	₃₇₅ Nb _{0.125} O ₃				
	$300 \text{ K}, Pm\bar{3}m$		15 K, $Pm\bar{3}m$			Suggests a
	Rietveld	PDF	Rietveld	PDF		
a (Å)	4.0147(1)	4.0165(1)	4.0084(1)	4.0100(1)		tendency to
$U_{\rm iso}$ (Ba)	0.0061(1)	0.0052(3)	0.0028(1)	0.0021(1)		off-center
$U_{\rm iso}$ (Ti/Nb)	0.0093(3)	0.0080(2)	0.0070(2)	0.0059(1)		
$U_{\rm iso}$ (O)	0.0077(1)	0.0061(1)	0.0053(1)	0.0040(1)		
Occupancy (Nb)	0.131(1)	1/8	0.132(1)	1/8		
R_w (%)	3.0	7.4	3.4	8.5		

What about the very short range ? BaTi_{0.875}Nb_{0.125}O₃ displays distortions in the first (Ti/Nb)-O neighbor:

Simulations of the first peak of BaTiO₃ for the different crystal structures.

Findings:

$$SrTi_{0.875}Nb_{0.125}O_{3}$$
:

Nb-substitution (on the perovskite B site) does not frustrate tilting. The ground state is tetragonal (with enhanced tilting compared with $SrTiO_3$).

Tilting distortions do not influence the ground state, which is metallic (Cf. SrRuO₃, LaNiO₃ ...)

$$BaTi_{0.875}Nb_{0.125}O_{3}$$
:

Nb-substitution (on the perovskite *B* site) frustrates long-range ordering of dipoles; additionally helped by dipole-dipole screening due to charge carriers. Average structure is cubic.

Dipoles exist locally however. Incoherent off-centering might aid the insulating ground state.

**Dipoles exist locally however. Incoherent off-centering might aid the insulating ground state.

Summary

In many functional materials, modes of disordering exist which may or may not be coherent, and when they are not, special tools are required to see them.

incoherent

coherent

PHYSICAL REVIEW LETTERS

week ending 4 APRIL 2008

Local Lattice Dynamics and the Origin of the Relaxor Ferroelectric Behavior

W. Dmowski, S. B. Vakhrushev, I.-K. Jeong, M. P. Hehlen, F. Trouw, and T. Egami 1,5,6

Dynamic PDF: Pb(Mg_{1/3}Nb_{2/3})O₃, Pharos diffractometer at Los Alamos, 100 g sample, 1 day per temperature.

