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A. B. Harris, J. Phys. C 7, 1671 (1974)
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Figure 2. Monte Carlo simulation of domain growth in the d = 2 Ising model at T = 0 (taken 
from Kissner [8]). The system size is 256 X 256, and the snapshots correspond to 5, 15, 
60 and 200 Monte Carlo steps per spin after a quench from T = ~.  

is illustrated in figure 2, which shows a Monte Carlo simulation of a two-dimensional 
Ising model, quenched from TI = ~ to TF = 0. Inspection of the time sequence may 
persuade the reader that domain growth is a scaling phenomenon; the domain patterns 
at later times look statistically similar to those at earlier times, apart from a global 
change of scale. This 'dynamic scaling hypothesis'  will be formalized below. 

For pedagogical reasons, we have introduced domain growth in the context of  the 
Ising model and shall continue to use magnetic language for simplicity. A related 
phenomenon that has been studied for many decades, however, by metallurgists, is the 
spinodal decomposition of binary alloys, where the late stages of  growth are known as 
Ostwald ripening. Similar phenomena occur in the phase separation of fluids or binary 
liquids, although in these cases the phase separation is accelerated by the Earth's 
gravitational field, which severely limits the temporal duration of the scaling regime. 
The gravitational effect can be moderated by using density-matched binary liquids 
and/or performing the experiments under microgravity. All the above systems, 
however, contain an extra complication not present in the Ising ferromagnet. This is 
most simply seen by mapping an AB alloy onto an Ising model. I f  we represent an A 
atom by an up spin, and a B atom by a down spin, then the equilibrium properties of 
the alloy can be modelled very nicely by the Ising model. There is one important feature 
of  the alloy, however, that is not captured by the Ising model with conventional Monte 
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Ising model, quenched from TI = ~ to TF = 0. Inspection of the time sequence may 
persuade the reader that domain growth is a scaling phenomenon; the domain patterns 
at later times look statistically similar to those at earlier times, apart from a global 
change of scale. This 'dynamic scaling hypothesis'  will be formalized below. 

For pedagogical reasons, we have introduced domain growth in the context of  the 
Ising model and shall continue to use magnetic language for simplicity. A related 
phenomenon that has been studied for many decades, however, by metallurgists, is the 
spinodal decomposition of binary alloys, where the late stages of  growth are known as 
Ostwald ripening. Similar phenomena occur in the phase separation of fluids or binary 
liquids, although in these cases the phase separation is accelerated by the Earth's 
gravitational field, which severely limits the temporal duration of the scaling regime. 
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most simply seen by mapping an AB alloy onto an Ising model. I f  we represent an A 
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persuade the reader that domain growth is a scaling phenomenon; the domain patterns 
at later times look statistically similar to those at earlier times, apart from a global 
change of scale. This 'dynamic scaling hypothesis'  will be formalized below. 
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Ostwald ripening. Similar phenomena occur in the phase separation of fluids or binary 
liquids, although in these cases the phase separation is accelerated by the Earth's 
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Figure 2. Monte Carlo simulation of domain growth in the d = 2 Ising model at T = 0 (taken 
from Kissner [8]). The system size is 256 X 256, and the snapshots correspond to 5, 15, 
60 and 200 Monte Carlo steps per spin after a quench from T = ~.  

is illustrated in figure 2, which shows a Monte Carlo simulation of a two-dimensional 
Ising model, quenched from TI = ~ to TF = 0. Inspection of the time sequence may 
persuade the reader that domain growth is a scaling phenomenon; the domain patterns 
at later times look statistically similar to those at earlier times, apart from a global 
change of scale. This 'dynamic scaling hypothesis'  will be formalized below. 

For pedagogical reasons, we have introduced domain growth in the context of  the 
Ising model and shall continue to use magnetic language for simplicity. A related 
phenomenon that has been studied for many decades, however, by metallurgists, is the 
spinodal decomposition of binary alloys, where the late stages of  growth are known as 
Ostwald ripening. Similar phenomena occur in the phase separation of fluids or binary 
liquids, although in these cases the phase separation is accelerated by the Earth's 
gravitational field, which severely limits the temporal duration of the scaling regime. 
The gravitational effect can be moderated by using density-matched binary liquids 
and/or performing the experiments under microgravity. All the above systems, 
however, contain an extra complication not present in the Ising ferromagnet. This is 
most simply seen by mapping an AB alloy onto an Ising model. I f  we represent an A 
atom by an up spin, and a B atom by a down spin, then the equilibrium properties of 
the alloy can be modelled very nicely by the Ising model. There is one important feature 
of  the alloy, however, that is not captured by the Ising model with conventional Monte 
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A. B. Harris, J. Phys. C 7, 1671 (1974)
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Generalization by CCFS

• What if no reference clean transition? 

• Chayes, Chayes, Fisher, Spencer (CCFS) 

• Probability distribution of order parameter 

• Finite-size scaling 

Chayes, Chayes, Fisher, Spencer, PRL 57, 2999 (1986)
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Probability distribution of order parameter

Eg: Variance of disorder

At fixed δ, L

Measure order 
parameter Y for 

each sample

P[Y]

Y

Chayes, Chayes, Fisher, Spencer, PRL 57, 2999 (1986)

ParamagnetFerromagnet
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Finite-size scaling

Chayes, Chayes, Fisher, Spencer, PRL 57, 2999 (1986)
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�FS(L)

Median/Moment, etc 

Lower bound this

Upper bound that

dY
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An elementary upper bound

����
d[X]

d�
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p

[(@�E)2]c

p(Disorder) / e�E

Disorder distribution

Disorder susceptibility

Disorder local ⇒ Extensive susceptibility 

����
d[X]
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����  ↵Ld/2
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Tail theorem
Median[Y]

�

L

�FS ⇠ L�1/⌫FS

⌫FS � 2/d

Technical assumptions 
on the tails of the 

distribution

Chayes, Chayes, Fisher, Spencer, PRL 57, 2999 (1986)

�FS(L)
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Mean theorem
• Order parameter Y is a bounded random variable 

• Finite-size scaling ansatz

[Y ](L, �) ⇠ 1

La
Ỹ (L1/⌫�)

For any short-range correlated quenched disorder

⌫ � 2

d+ 2a

Chandran, Laumann, Oganesyan, arXiv:1509.04285 (2015)
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Application: MBL-ETH transition
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Entanglement entropy density

Mean[s]

�

MBLETH

✓ Area law

✓ Volume law

= sth(e)

Bauer and Nayak, J Stat Mech P09005 (2013)
Tarun Grover, arXiv:1405.1471 (2014)
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Entanglement entropy density

• Finite size scaling ansatz

[s](L,LA, �) ⇠
1

La
s̃(L1/⌫�, LA/L)

• [s] jumps at transition ⇒ a=0 

• Mean theorem ⇒ ⌫ � 2/d

• If CCFS assumptions apply, ⌫FS � 2/d
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Matrix element/Level spacing

Serbyn, Papic, and Abanin, arXiv:1507.01635 (2015)
Vosk, Huse, and Altman, PRX 5, 031032 (2015)

Potter, Vasseur, and Parameswaran, PRX 5, 031033 (2015)

Local perturbation      effectiveness in hybridizing eigenstates

g(L) =
|hEn+1|V̂ |Eni|
En+1 � En

L

V̂

ETH

MBL
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Figure 2. Distribution of G = log (|Vnn+1|/�) across the MBL transition displays qualitatively di↵erent scaling with system
size. (a) For weak disorder (W = 0.5),when the system is in the ergodic phase, G increases with system size, and the distribution
shifts to the right. (b) At the MBL transition (W = 3.6), the distribution broadens but does not move. (c) In the MBL phase
(W = 5), G becomes smaller for larger systems, and the shape of the distribution is approximately gaussian.

chain. The Hamiltonian of this model is given by:

H = J
x

LX
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,

(8)
where we use periodic boundary conditions and identify
�
L+1

⌘ �
1

. Below we set J
x

= 1. The random z-field h
i

on each site is drawn from a box distribution [�W ;W ],
and �± = (�x ± i�y)/2. At J

z

= 0, this model can be
mapped onto free spinless fermions moving in a disorder
potential via the Jordan-Wigner transformation; in this
case, all eigenstates are localized for arbitrary disorder
strength W . Introducing J

z

6= 0 is equivalent to turning
on the nearest-neighbour interactions between fermions.

Previous work [5] has demonstrated that the model (8)
exhibits the MBL phase at strong disorder (W > W

c

),
and the ergodic phase at weak disorder (W < W

c

). The
delocalization transition takes place at some critical dis-
order strength W

c

. Several numerical studies [5, 21, 23–
27, 40, 41] have estimated the location of the transi-
tion in this model using various probes, including the
statistics of eigenenergies, entanglement entropy and its
fluctuations, participation ratios and di↵erent dynami-
cal probes. In particular, state-of-the-art exact diagonal-
ization performed on systems up to L = 22 spins [24]
has robustly determined the location of the transition at
W

c

⇡ 3.6.
Here we use exact diagonalization to numerically study

the statistics of the o↵-diagonal matrix elements and pa-
rameter G for the XXZ spin chain (8) across the MBL-
delocalization transition. In order to establish the uni-
versality of this approach, we considered the response of
the spin chain to two di↵erent local perturbations:

V̂
1

= �z

I

, V̂
2

= �+

I

��
I+1

+ ��
I

�+

I+1

. (9)

The interaction strength was fixed to be J
z

= 1, simi-
lar to previous studies. All the data were obtained for
chains with periodic boundary conditions constraining
the Hilbert space to states with zero total spin, such that

the dimension is D(L) =
�

L

L/2

�
. Disorder averaging was

performed over at least 104, 5000, 4000, 2000 and 200
realizations for L = 8, 10, 12, 14, 16 spins.

A. Distribution of G(L) in the middle of the band

First we study the disorder-averaged distribution of G
over D(L)/L eigenstates in the middle of the band. As
discussed in the introduction, we perturb the eigenspec-
trum by the diagonal matrix elements of the chosen op-
erator, E0

n

= E
n

+ hn|V̂
1,2

|ni. Perturbed eigenenergies
{E0

n

} are sorted, and we collect the statistics for G(L) as
defined in Eq. (1).
The behaviour of the distribution function of G(L) is

illustrated in Fig. 2. In this case, the perturbation opera-
tor was chosen to be V̂

1

(we found a qualitatively similar
behaviour for V̂

2

). We observe that the distribution of
G exhibits a qualitative change across the MBL transi-
tion. In the ergodic phase [Fig. 2(a)], the average value
of hG(L)i grows with the system size, signalling that a lo-
cal perturbation is more and more likely to hybridize the
nearby states – a signature of delocalization. If one scales
the distribution by the square root of the Hilbert size di-
mension, hG(L)i/pD, the distributions for di↵erent sys-
tem sizes indeed approximately collapse, confirming that
G scales as predicted by the ETH.
In contrast, in the MBL phase [Fig. 2(c)], the averaged

value of hGi decreases as system size is increased; this
reflects the fact that a local perturbation is less and less
likely to hybridize the nearby states, and therefore the
eigenstates and the LIOMs remain robust. Moreover,
the distribution of G becomes broader at larger L, and
is approximately normal. We found that the distribution
becomes very close to normal at large system sizes and
strong disorder.
Finally, at intermediate disorder W = 3.6, the aver-

age hG(L)i remains nearly independent of system size.
Hence it is natural to identify this point with the MBL-
delocalization transition. Below we will use the energy-

Serbyn, Papic, and Abanin, arXiv:1507.01635 (2015)

Vosk, Huse, and Altman, PRX 5, 031032 (2015)
Potter, Vasseur, and Parameswaran, PRX 5, 031033 (2015)

V̂ = �z
1

• Fat tails 
• Mean and tail theorems don’t 

apply 
• No Harris bound on scaling 

window

= log(g(L))
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Nightmare on numerics streetRAPID COMMUNICATIONS

DAVID J. LUITZ, NICOLAS LAFLORENCIE, AND FABIEN ALET PHYSICAL REVIEW B 91, 081103(R) (2015)

a random magnetic field, governed by the Hamiltonian

H =
∑

i∈[1,L]

Si · Si+1 − hiS
z
i , (1)

with hi drawn from a uniform distribution [−h,h] (to-
tal magnetization Sz is conserved). Model (1) has been
used [21,28,33,41] as a prototype for the MBL transition
in the “infinite-temperature” limit, where the full many-body
spectrum (or a large fraction thereof) is considered for systems
of maximum size L ≈ 16. In this work, we instead use a
shift-inverse ED approach and are able to reach eigenstates
at arbitrary energy density for systems up to L = 22 with
very large Hilbert spaces (dimHL=22 = 705 432 in the Sz = 0
sector). Our simulations unambiguously reveal the existence of
an extensive many-body localization edge: The resulting phase
diagram (disorder strength h vs energy density ϵ; Fig. 1) is built
on a careful finite-size scaling analysis of numerous energy-
resolved estimates. In particular, the transition is captured
using, e.g., spectral statistical correlations between nearby
eigenstates, volume vs. area law of entanglement entropies
and bipartite fluctuations, spin relaxation, and localization
properties in the Hilbert space, which all roughly agree within
error bars. We also perform a scaling analysis close to the
MBL transition.

Characterization of ergodic and localized regimes. Before
presenting our numerics, we summarize the main differences
between ergodic and localized phases, and the observables
used to quantify them.

(a) Level statistics and eigenvectors similarity. A popular
way to differentiate extended and localized regimes relies
on studying spectral statistics using tools from random
matrix theory [44]. In the ergodic regime, the statistical
distribution of level spacings follows Wigner’s surmise of the
Gaussian orthogonal ensemble (GOE), while a Poisson distri-
bution is expected for localized states. It is convenient [27]
to consider the ratio of consecutive level spacings r (n) =
min(δ(n),δ(n+1))/max(δ(n),δ(n+1)) with δ(n) = En − En−1 at a
given eigenenergy En to discriminate between the two phases,
as its disorder average changes from rGOE = 0.5307(1) [45] to
rPoisson = 2 ln 2 − 1 ≃ 0.3863. This has been used in several
works [21,27,28,31,36,39], averaging over a large part of the
spectrum. Here, we compute r in an energy-resolved way in
order to locate the MBL edge (Fig. 2).

Quite interestingly, the GOE-Poisson transition can also
be captured by correlations between nearby eigenstates.
We expect eigenfunctions to be “similar” (“different”) in
the ergodic (localized) regime. We quantify the degree of
correlation by the Kullback-Leibler divergence (KLd) [46],
defined by KL =

∑dimH
i=1 pi ln(pi/qi), where pi = |⟨i|n⟩|2 and

qi = |⟨i|n′⟩|2 are the moduli squared of the wave function
coefficients of two nearby eigenstates |n⟩,|n′⟩ expressed in
the computational basis {|i⟩} (here {Sz}). The KLd displays
different behavior in the two phases (Fig. 2): We find KLGOE =
2 [47], and KLPoisson ∼ ln(dimH).

(b) Entanglement entropy (EE). Beyond level statistics, EE
provides a quantitative tool to characterize how information is
spread from one part of the system to another [8]. In the ergodic
regime satisfying the ETH, the reduced density matrix ρA of a
typical eigenstate is expected to be thermal, yielding a volume-
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FIG. 2. (Color online) Adjacent gap ratio (top) and Kullback
Leibler divergence (bottom) as a function of disorder strength in the
spectrum center ϵ = 0.5. Insets: (top) data collapse used to extract the
critical disorder strength hc and exponent ν. The h axis is transformed
by (h − hc)L1/ν ; (bottom) distribution of KLd in both phases.

law scaling (with the subsystem A size) for the entanglement
entropy SE = −TrρA ln ρA. Conversely, localized eigenstates
display a much smaller entanglement, expected to cross over
towards an area-law scaling [8,21] when the subsystem size
exceeds the localization length. These different scalings of
SE allow one to distinguish both regimes (Fig. 3). In the same
spirit, we expect bipartite fluctuations of the subsystem magne-
tization Sz

A [48]F = ⟨(Sz
A)2⟩ − ⟨Sz

A⟩2 to exhibit similar scaling
(Fig. 4).

(c) Hilbert-space localization. Another characterization of
MBL relies on inverse participation ratios and associated
participation entropies (PE), traditionally used in the context
of single particle localization [49–51] and recently for many-
body physics [52,53]. Here the localization is studied in the
Hilbert space (of dimension dimH) of spin configurations
via the disorder average PEs SP

q , defined for any eigenstate
|n⟩ represented in the {Sz} basis by SP

q (|n⟩) = 1
1−q

ln
∑

i p
q
i

[SP
1 (|n⟩) = −

∑
i pi ln pi]. We generically find eigenstates to

be delocalized in both regimes with qualitatively different
features. In the ergodic regime, we obtain a leading scaling
SP

q = aq ln(dimH) with aq ≈ 1∀q (see color coding of a1 in
Fig. 1). In the localized phase, PE also grows with system size
(Fig. 5), but much slower with aq ≪ 1, or aq = 0 within error
bars and a slow log divergence SP

q = lq ln(ln dimH), indicating
a nontrivial multifractal behavior.

Numerical method. The complete diagonalization of the not
translation invariant Hamiltonian equation (1) is out of reach
for system sizes L ! 18 spins. Therefore, we use an approach
successful for the Anderson localization problem (see, e.g.,
Ref. [51]) and restrict ourselves to certain energy slices in
the spectrum by using a shift-invert spectral transformation
(H − E1)−1. In the transformed problem, it is easy to apply

081103-2

�FS

the mean (left inset) and standard deviation of this
distribution, at an energy in the middle of the spectrum,
as a function of disorder strength. In the thermal phase at
weak disorder, the mean follows a volume law approaching
the value S ¼ ðL ln 2 − 1Þ=2 of a random state [32] indi-
cated by the dashed lines. With increasing disorder, the
average entanglement entropy decreases and eventually
saturates at S ¼ ln 2 deep in the localized phase. The reason
for this is that eigenstates become Schrödinger cat states
with definite parity that are a linear combination of the two
product states obtained from each other by the action of P,
with each domain wall pinned by the disorder at a single
bond. The standard deviation of the entanglement entropy

goes to zero in the thermodynamic limit both deep in the
thermal and localized phase, but diverges at the transition.
In the thermal phase, this is consistent with the eigenstate
thermalization hypothesis that requires the entropy to
depend on energy only, while in the localized phase, all
states have the same ln 2 entanglement entropy. The
diverging peak could be understood as follows. For a
given system size, disorder amplitude δJ and energy, near
the transition δJc, the exact value of the entanglement Sn
depends on the specific disorder realization. At a fixed
value of δJ close to the transition, therefore, the set of states
obtained from an ensemble of disorder realizations consists
of both extended and localized states giving rise to a large
standard deviation in the entanglement. Naturally, with
increasing system size, the range of values of δJ that have
states of mixed character narrows. By the same token, we
could observe the transition by measuring the standard
deviation over small energy windows.
Next, we probe the MBL transition by studying the

evolution of the entanglement entropy after a local quench
at the edge of an eigenstate. Before discussing the details of
the physics, we explain the procedure we used. After
quenching an eigenstate jni with a spin flip on the first
site, we calculate the time dependent entanglement entropy
SnðtÞ obtained from the von Neumann entropy of the state
jψnðtÞi ¼ expð−iHtÞσx1jni. In a finite system, SnðtÞ satu-
rates at long times allowing us to define the difference of
entanglement entropies

ΔSn ¼ lim
t→∞

SnðtÞ − Snð0Þ: ð2Þ

In Fig. 2(b), we plot the disorder averaged entanglement
difference hΔSi as a function of disorder strength, at an
energy in the middle of the spectrum. The entanglement
difference goes to zero both in the thermal and localized
phases. In the thermal phase, the entanglement difference
goes to zero because of the eigenstate thermalization
hypothesis since the local perturbation only introduces a
small uncertainty in the energy of the state. In the localized
phase, the perturbation cannot propagate to the middle
of the sample in order to generate any entanglement. Note
that the perturbation of the exact eigenstate is local and,
therefore, no entanglement is generated from the dephasing
mechanism observed in a global quench [24,26].
Around the transition, hΔSi peaks with a diverging

amplitude. This diverging peak might be understood as a
consequence of the many-body mobility edge. Namely,
after the quench, we have a state that is no longer an
eigenstate, but, rather, a linear combination of a number of
states with energies around En. Close to the transition, this
linear combination contains both extended and localized
states, and generates extensive entanglement under time
evolution. In the case when the initial state is a localized
state, this results in an entanglement difference that scales
with system size. Unlike σS, the quench mixes eigenstates

(a)

(b)

FIG. 2 (color online). (a) Standard deviation of entanglement
over the disorder ensemble as a function of disorder strength δJ
for different system sizes L and D independent disorder real-
izations, at a fixed energy density in the middle of the spectrum
(ϵ ¼ 59=60). The left inset shows the mean entanglement entropy
with dashed lines giving the values S ¼ ðL ln 2 − 1Þ=2 and
S ¼ ln 2. The right inset gives the scaling collapse of the data
in the main panel. (b) Entanglement difference as a function of
disorder strength for a local quench from an eigenstate in the
middle of the spectrum. The inset gives the scaling collapse
of the data.
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There's no time but..

• Applies to MBL-delocalized, MBL-MBL transitions 

• Can generalize to correlated disorder 

• Applies to multiple diverging length scales 

• Applies to first order transitions
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Take-away messages

•                 at MBL-ETH transition 

• Mean entanglement entropy density ([s]) 

• Mean level spacing parameter ([r]) 

• …  

• Going forward 

• Gaussian distributed disorder 

• Medians, entire distribution 

• Caution: collapsing tails can lead to smaller apparent ν

⌫ � 2/d


