Classical Nonlinear Lattice Waves — any MBL ?
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| think | can safely say that nobody understands
quantum mechanics.

(Richard Feynman)

izquotes.com

Messenger Lectures on ‘The Character of Physical Law’ Cornell U 1964
lecture 6 : Probability and Uncertainty — the Quantum Mechanical View of Nature



Nonlinear Hamiltonian lattice waves ?

- all about systems which are close to integrability H = Hy( *) + eH ( J *)

~

- e.g. countable set of linear modes s
integrable Ho Z wiy

» add nonlinear interaction between these modes
typically the system becomes nonintegrable

H, = Z Il,m,p,qv((*]v H)lv (Jv Q)m, (J7 9)2% (J7 H)Q)

l,m,p,q
- follow the spreading of a localized ( e.g. single mode) wave packet

« or compute properly defined conductivities
Examples: disorder (AL), quasiperiodics (AA), finite systems (FPU)
or simply weakly coupled anharmonic oscillators/rotors

MBL? No? But perhaps outside MBL, in the bad metal nonergodic regime ?



Nonlinear Hamiltonian lattice waves ?

 MBL - quantum, nonergodic bad metal — classical ?
 What about KAM, Arnold diffusion, stochastic web ?
* Is QM simply coarse-graining over fine classical phase space structures?

 Or is classical dynamics a brutal projection from high-d Hilbert into
low(er)-d phase space ?



Example: FPU Paradox : selective but long range coupling

Origin of equipartition and ergodicity?
Wave interactions ?

g - -

v (. 2
"\n_(-'\n-l-l 2\ +\n l)+a[ n+l_\n) _(\n_\n l)]

(4

. 1h
Qq+quq_

q:"m E ( gm0 —

two time scales

T1: formation of exponentially localized packets
T2: gradual destruction and equipartition

Computing periodic orbits, obtain boundary of pert.

wq = 2sin(

| mmm?ﬂB HIQQH’I
(N1 o =

q_f+n: 7(N+1))

theory: T2 ~T1:

FPU problem:

excited mode q=1

did not observe equipartition

energy stays localized in few modes
recurrences after more integrations
thresholds in energy, system size etc
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FPU: Examples of open problems

« dependence of T2 on parameters
 where is KAM
« dynamical mechanisms of spreading

* Quantum case: Finite System MBL ?



Short range mode-mode interactions: model inflation
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Various classes of models can be defined and are available on the market:
 Number of additional integrals of motion (e.g. norm = particle number)
 Power (exponent) of nonlinearity, not only restricted to two-body int.

« Space dimension

« Connectivity between normal modes (number, long vs short range)



Anderson localization Anderson (1958)
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Width of EV spectrum: A =4+ W
Asymptotic decay: ijl ~ e /&)

Localization length: £()\,) < £(0) = 100/W2

Localization volume of NM: L A
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Topical Reviews:
SF, Springer 2015
T.V.Lapteva,M.V. Ivanchenko and SF,
J Phys A Topical Review 47 (2014) 493001

Nonlinear waves: spreading!
* a disordered medium

* linear equations of motion: all eigenstates are localized
with a finite upper bound on the localization length

» add short range nonlinearity (interactions)
- follow the spreading of an initially localized wave packet
* these models may serve as approximations to quantum many body

systems in certain limits, e.g. of a large number of (bosonic) particles —
photons or cold atoms

it = ey + Bl *r — ip1 — Pi—a

Two conserved quantities: energy and norm (aka number of particles)



Topical Reviews:
SF, Springer 2015

Definin h r e « T.V.Lapteva,M.V. Ivanchenko and SF,
e g the proble J Phys A Topical Review 47 (2014) 493001

* a disordered medium

* linear equations of motion: all eigenstates are localized
with a finite upper bound on the localization length

« add short range nonlinearity (interactions)

- follow the spreading of an initially localized wave packet

Will it delocalize?  Yes because of nonintegrability and ergodicity

No because of energy conservation —
spreading leads to small energy/norm density,
nonlinearity can be neglected,
dynamics becomes integrable, and
Anderson localization is restored



Equations in normal mode space:
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NM ordering in real space: Xz/ — Zl ZA,% l

Characterization of wavepackets in normal mode space:
o = o/ S leul? 7= X, v

Second moment: 7112 = ZV(V — 5)221/ »  location of tails

ici i . — 2 ey number of strongly excited modes
Participation number: P — 1/ ZV z gly

P2 _l" K adjacent sites equally excited: C = 12

mo _I—> K adjacent sites, every second empty
or equipartition: C — 3

Compactness index: ( =



Scales =4 -

- Eigenvalue (frequency) spectrum width: A = W +4 8

2 :
* Localization volume of eigenstate: V = 360/W ~18 (sites)

» Average frequency spacing inside
localization volume: d=A/V 0.43

* Nonlinearity induced frequency shift: 5l — 5|¢l|2

Three expected evolution regimes: o  Self-Trapping 3

Weak chaos :0<d 0
Strong chaos :d<d<2
(partial) self trapping : 2 < & °°

Weak Chaos
SF Chem Phys 2010, TV Laptyeva et al EPL 2010
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Disordered chains: subdiffusion! wl = 0 lo

SF+D.Krimer+H.Skokos 09
W=4,68=0,0.1,1,4.5
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Test: additional manual dephasing in normal mode space

W=4,7,10 B= 3,4,6
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SF et al PRL 2009



| | ; ISelf-ITraplpingl
W=4
Wave packet with 20 sites 10 E
Norm density = 1 w0 -
Random initial phases 10 4
Averaging over 1000 realizations o Wemelmes
a=0.33*0.02 (DNLS) 10" —4 T
a=0.33 £0.05 (KG) SF et al PRL 2009
Strong chaos and crossover to weak chaos TV Laptyeva et al EPL 2010
DNLS, W=4 KG, W=4 KG
d
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Integrability or chaos?
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Integral approximation (Nr. 1):  #u=Y Wlv+B Y Lyivvivev/Indvdvidy,
NO SPREADING! v V1,V2,V3,V4
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Average over time, obtain secular normal form = integral approximation Nr 2:
NO SPREADING!
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One of the neglected terms: perturbation approach
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Breakdown of perturbation approach = resonance

Bn <Rynq

V3V3(I)
V21A

B 4
Py,=1— (1 _/0 %(x)dx) , Sy = Bn



Effective noise theory [ -]

v

A
- at some time t packet contains 1/n modes: 1/n > P, ‘
: 1
- each mode on average has norm L7 ~n <K
M
- the second moment amounts to 179 ~ 1/n2 v
<P
Simplest assumption: * some modes in packet interact resonantly

and therefore evolve chaotic
* Probability of resonance: P(n)
« all phases decohere on some time scale

exterior mode: 7’¢H ~ )\u¢>u+6n:3/27)(6n)f(t)
confirmed by:

<f(t)f(t/)> _ 5(t _ t') Michaely et al

PRE 2012
Skokos et al 2013

momentary diffusion rate: ) = 1/T ~ 527@2(7)(6”))2



Main findings (sweeping a lot of stuff under the carpet)

 d - mean level spacing in localization volume

Gtl/2, Bn/d > 1 (strong chaos)

mo ~ L o
d=2/3p43¢13  Bn/d < 1 (weak chaos)

m, ~ (f°t)7, strong chaos,

1 _
m, ~ (f*t)=P, weak chaos.

Strong chaos: intermediate but potentially long lasting regime

Weak chaos: so far asymptotic

Spread: up to 300¢, time up to 10'°, averaging up to 1000 realizations

Chaotic dynamics, positive Lyapunovs

No signs of slowing down

confirmed for quasiperiodics, disorder, nonlinear quantum kicker rotor, 1d, 2d
Qualitatively similar for Wannier Stark ladder (but exponents nonuniversal)



Restoring Anderson localization? A matter of probability and KAM

Fix the size of a wave packet:

» the probability P to hit a regular trajectory tends to unity
in the limit of zero nonlinearity
(Aubry/Johansson, Fishman/Pikovsky, Basko, lvanchenko/Laptyeva/SF)

Fix the norm/energy but vary the size of a wave packet:

 The probability to hit a regular trajectory tends to unity in the limit
of infinite size
(Fishman/Pikovsky)

« This depends on the particular model, and nonlinearity exponent
(lvanchenko/Laptyeval/SF)

NOTE: spreading wave packets are observed to penetrate this KAM regime !



Interacting BEC with quasiperiodic Aubry-Andre potential

wed

PRL 106, 230403 (2011) PHYSICAL REVIEW LETTERS 107

Observation of Subdiffusion in a Disordered Interacting System

CRS 5 : 1 - 1 - 1 - L7 i 23 4
E. Lucioni, * B. Deissler, L. Tanzi, G. Roati, M. Zaccanti, "' M. Modugno,™ M. Larcher,
F. Dalfovo,* M. Inguscio,' and G. Modugno"*

Bose-Einstein condensate of 3°K atoms
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Finite temperature conductivities
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Figure 2. KG chain: x(7T) for W = 2 (filled squares). For comparison we also show
the data for €, = 1 (filled circles). Thin solid lines guide the eye. The dashed line
corresponds to the power law T2. The stronger disorder case W = 6 corresponds to the
open diamond data points.



Some questions

Will spreading slow down log-like in a further regime of KAM?
Weak chaos definitely persists into a KAM regime!
Is the weak chaos regime a nonergodic bad metal, with D~(bn)* ?

If yes, what is then the predicted log-like VeryWeakChaos regime —
some kind of classical pseudo-MBL ?

If there is VWC, what kind of not-so-bad metal is then weak chaos?

Spreading wave packets allow to explore the Arnold web by simply
penetrating into it deeper and deeper upon spreading!

Or is everything only the physics of roundoff errors?

All this is about penetrating a KAM + Arnold diffusion/web regime

for short range mode-mode interactions.
Naive quantizing implies a coarse-graining of classical phase space
structures. Is that enough to get some kind of MBL ?



Some questions

With the assumption of chaos the spreading characteristics
could be related to equilibrium properties at corresponding
densities

KAM: for a sufficiently localized wave packet, AL is restored for weak
nonlinearities in a probabilistic way (Basko, Ivanchenko et al, Fishman)

Can one perform similar computations in MBL settings?

Experiments (light, cold atoms) so far reach 104° in our dimensionless
time units, and do observe onset of spreading, but no reliable
exponents, not even mentioning the issue of asymptotics, or quantum
deviations

Is this all about zero density and of no relevance for finite T?
Or are the insights from ‘thermalizing’ wave packets connecting
nonequilibrium dynamics with expected equilibrium properties?



Nonlinear diffusion equations and scaling
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Figure 4: Main: The log of the normalized energy density distribution (logq z1)
at three different times (from top to bottom 7 ~ 10*, 1 ~ 107, ~ 10%). The
initial parameters are £ = 0.2, W = 4 and L = 21. Symbols correspond



Density resolved spreading
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scaled densities : y = SH/N , x = 8S/N
partition function : Z = / dle— 7 (H+1S)

T=0line, J=1, W <10
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Density resolved spreading

8 | non-Gibbs

(solitons)

Thermalized

wave packets spread along
straight lines, straight to zero

Inaccessible

x < d : weak chaos, observed 0 2 4 6 8
down to x =d/100 ! Rasmussen et al, PRL 2000 (W=0)

crossing the Gibbs-nonGibbs
line shows no impact on spreading

Ivanchenko et al, Basko:
x << d is KAM regime for wave packets Py 4y ~ (1 — x/d)

spreading wave packets launched outside the KAM regime with x > d
simply spread into it once x<d

x << d might be a nonergodic regime with nonzero conductivity

work in progress ...



