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Anderson localization

Quantum motion in a random potential
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Disorder Is “irrelevant” in high-enough Dim
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RG beyond the lowest order

Generating functional for the Green’s functions, even a single one (in this example, a=2)
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Origin of the critical point

Motion in{imaginary\random potential = self avoiding random walk = O(N) model of statistical mechanics in the limit N — 0O

De Gennes 1972

Recall from the studies of the Ising model near 4D
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Full RG flow diagram, d>2a
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Conseqguence: critical DoS 8
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Correlation function within this theory produces disorder-averaged Green’s functions, in particular gives the density of states
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New transitions in higher dimensions ~——
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Disordered Dirac (Weyl) Hamiltonian

3
H:vFZaiki—l—V(r) a=1 3=d > 2«
i=1

“Soft” disorder which does not scatter from one Dirac cone to another.

(more complicated disorder proportional to Pauli matrices possible; won'’t lead to a critical point - so restrict to the potential disorder)

Absence of localization in a disordered single Dirac cone

Goes back to the work on the absence of localization
at the boundary of topological insulators (2007 and earlier)

Study of the DoS goes back to the original work of E. Fradkin (1986)

That pioneering work recognized the existence

of the critical point at d=3, a=1, for the first time. O ’Y

Recent interest starting from the work of Goswami and Chakravarty, 2011



Density of states

z<d/2: P.M. Ostrovsky, S.V. Syzranov, L. Radzihovsky, VG,
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Density of states

3
H = vp Z oik; + V(r)

z<d/2: P.M. Ostrovsky, S.V. Syzranov, L. Radzihovsky, VG,
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Lifshitz states (Nandkishore, Huse, Sondhi (2014))

the scaling ansatz for the DoS

these authors were also the first to write down
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1D model with long-range hopping

1
Critical density of states if @ < 5

(1) H = T a;f,bam + E Vnailan
HO ~J ‘k’a Like disordered Schrddinger equation
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Long range Interacting spin systems

PRL 103, 120502 (2009) PHYSICAL REVIEW LETTERS 18 SEPTEMBER 2009

Entanglement and Tunable Spin-Spin Couplings between Trapped Ions
Using Multiple Transverse Modes

K. Kim,' M.-S. Chang,1 R. Islam,' S. Korenblit,! L.-M. Duan,? and C. Monroe'

"Joint Quantum Institute: Department of Physics, University of Maryland, and National Institute of Standards and Technology,
College Park, Maryland 20742, USA

2FOCUS Center and MCTP, Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
(Received 2 May 2009; published 16 September 2009)

We demonstrate tunable spin-spin couplings between trapped atomic ions, mediated by laser forces on
multiple transverse collective modes of motion. A o,0,-type Ising interaction is realized between
quantum bits stored in the ground hyperfine clock states of ''Yb" ions. We demonstrate entangling
gates and tailor the spin-spin couplings with two and three trapped ions. The use of closely spaced
transverse modes provides a new class of interactions relevant to quantum computing and simulation with

large collections of ions in a single crystal.

| E | | ER DOI: 10.1103/PhysRevLett.103.120502 PACS numbers: 03.67.Pp, 03.67.Ac, 03.67.Lx, 37.10.Ty
doi:10.1038/nature10981

Engineered two-dimensional Ising interactions in a
trapped -ion quantum simulator with hundreds of spins

Joseph W. Britton', Brian C. Sawyer', Adam C. Keith®?, C.-C. Joseph Wang?, James K. Freericks?, Hermann Uys*,
Michael J. Biercuk® & John J. Bollinger'
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L.ong range interaction + disorder

xr _I <
H — 5 J@]Uz Oj I g ‘/;0-7; random spin chain

Short range J - Real space renormalization group

Jij ~ W ?27?7?

Friday schedule:
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random uncorrelated potential
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Dasgupta, Ma, Hu; 1979

D. Fisher, 1994
Subject of studies
on many-body
localization

11:00AM

Main Seminar Room

s 11:00AM - Rajiv Singh (UC Davis) - Early Breakdown of area-law entang
transition

s 11:30AM - Chris Monroe (UMD) - Observation of MBL states in trapped ion spin chains
12:30PM LUNCH BREAK

went at the many-body delocalization




L.ong range interaction + disorder
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Short range J - Real space renormalization group D. Fisher. 1994
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Numerical study of the 1D chain
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M. Garttner, S. Syzranov,
A.-M. Rey, VG, L. Radzihovsky
(2015)



Numerical study of the 1D chain
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Potential rounding off of the DoS

A possibility was raised that the singularity in the DoS is actually rounded off.

This could be the effect of non-zero DoS.

d
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The analysis was based
Pclean (E ) ™~ 2

on vanishing DoS

However, exact DoS is not vanishing as E — O

Another argument is based on the mapping between a=2, d>4 problem and self-attracting random walks.
Self-attractive random walks are known not to have any transitions above 4D.

Oono (1976); Brydges, Slade (1995)

vet ano:[[he: a:jgutr_nent. phol?]ts out th. absdence gf a;ny orjer - ; If so, the new localization transition exponent
parameiter 10 aistinguis e wea ISOrder and strong disorder pnases . is but an intermediate exponent Ny
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For example, DoS here may be rounded off

Whether this is so remains an open question



Conclusions and outlook

® New types of Anderson localization and critical
behavior In higher dimensions

® Potential rounding off of the singularities and
crossovers instead of transitions®

® Numerical test(s)?

® Experiments” Kicked rotor, Dirac materials, long range
interacting ions arranged in 1D chains?

® |nteractions?



