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|k|↵ â†kâk +
X

r

Vrâ
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râr

random potential
↵ = 2 Schrödinger spectrum

↵ = 1 Dirac spectrum

V

x

⇠

Can be encoded in this renormalization group equation
for disorder strength

random potential strength

@�

@`
= (2↵� d)� + . . .

P (V ) ⇠ exp

✓
� c

�

Z
ddr V 2

(r)

◆
Gaussian short-ranged correlated potential

K ⇠ (1/⇠)↵

Potential energy dominates at large ξd < 2↵

d > 2↵ Kinetic energy dominates at large ξ

V ⇠ ⇠
d
2

⇠d
=

1

⇠
d
2



Disorder is “irrelevant” in high-enough Dim 4

H =
X

k

|k|↵ â†kâk +
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RG beyond the lowest order 5

Averaging over disorder

Apply RG to this problem

Generating functional for the Green’s functions, even a single one (in this example, α=2)
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Origin of the critical point 6

Motion in imaginary random potential = self avoiding random walk = O(N) model of statistical mechanics in the limit N ! 0

De Gennes 1972
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Full RG flow diagram, d>2α 7
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Consequence: critical DoS 8
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New transitions in higher dimensions 9
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“Phase diagram” of available setups 10
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Disordered Dirac (Weyl) Hamiltonian 11

“Soft” disorder which does not scatter from one Dirac cone to another. 

Absence of localization in a disordered single Dirac cone

Goes back to the work on the absence of localization
at the boundary of topological insulators (2007 and earlier)

↵ = 1 3 = d > 2↵

(more complicated disorder proportional to Pauli matrices possible; won’t lead to a critical point - so restrict to the potential disorder)

H = vF

3X
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Study of the DoS goes back to the original work of E. Fradkin (1986)

That pioneering work recognized the existence 
of the critical point at d=3, α=1, for the first time.

Recent interest starting from the work of Goswami and Chakravarty, 2011



Density of states 12
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irrelevant in the renormalization group sense, so that at
weak disorder a direct transition between two topologically
distinct insulating phases [4], say, between TI1 and TI2,
remains. (In the specific situation we consider below, TI1 ¼
WTI and TI2 ¼ STI.) Only above a finite strength of
disorder W > 0, does the bulk energy gap become com-
pletely filled with impurity levels, so that the insulating
phases are replaced by a diffusive metallic (M) phase [22]
(see Fig. 1). Since TI1 and TI2 are characterized by a
different topological number protected by the bulk energy
gap, at the phase boundary the bulk spectrum is in general
closed. In the present case the system is also protected by
time-reversal symmetry, and such a gap closing appears as
a (Kramers) degenerate pair of point nodes, i.e., as the
Dirac semimetal (DSM) [23] line in the phase diagram. As
disorder is increased the DSM line also terminates at the
intersection with the insulator-metal phase boundary. In the
following we focus on the evolution of the DOS as one
moves along the DSM line, through the tricritical point Pc
where the DSM line terminates, and finally reaches inside
the metallic phase.
We have previously established, by a detailed numerical

study of the conductance [22], that although disorder W
shifts the position of the phase boundary [24–29] (deter-
mined, e.g., by the position of the conductance peak), it is
nevertheless irrelevant; the peak height of the conductance
on the DSM line is not influenced by the disorder strength.
It was also found [22] that on the DSM line the DOS
remains a quadratic function of low energies, exactly as in
the clean limit [see the curves (a) in Fig. 2]. Whereas the
quadratic behavior is left intact by disorder, the coefficient
of the quadratic term, which is related to the velocity v of
Dirac electrons, is renormalized [30], as in Eq. (21) below.

In this Letter we further quantify the behavior of the
DOS on the DSM line toward the diffusive metal phase, and
demonstrate that the DOS obeys a single parameter scaling
typical of second order phase transitions, with new values
of critical exponents. Our analysis is based on the single
parameter scaling hypothesis, which is substantially sup-
ported by numerical results. The scaling behavior of the
DOS is studied using the kernel polynomial method
(KPM) [31].
The 3D disordered Z2 topological insulator is modeled

as a Wilson-Dirac-type tight-binding Hamiltonian with an
effective momentum-dependent mass term [32],

mðkÞ ¼ m0 þm2

X

μ¼x;y;z

ð1 − cos kμÞ; (1)

implemented on a cubic lattice. The topological nature of
the model is controlled by the ratio of two mass parameters
m0 and m2 such that an STI phase with Z2 (one strong and
three weak) indices [19–21] ðν0; ν1ν2ν3Þ ¼ ð1; 000Þ
appears when −2 < m0=m2 < 0, while the regime of
parameters −4 < m0=m2 < −2 falls on a WTI phase with
ðν0; ν1ν2ν3Þ ¼ ð0; 111Þ (see Fig. 1).
In real space our tight-binding Hamiltonian reads

H ¼
X

r

X

μ¼x;y;z

!
jrþ eμi

"
it
2
γμ −m2

2
γ0

#
hrjþ H:c:

$

þ
X

r

jri½ðm0 þ 3m2Þγ0 þ Vr14&hrj; (2)

where eμ is a unit vector in the μ direction, and 14 represents
the 4 × 4 identity matrix. γμ and γ0 form a set of γ matrices
in a 4 × 4 representation,

γμ ¼
"

0 σμ
σμ 0

#
; γ0 ¼

"
12 0

0 −12

#
; (3)

where σμ are Pauli matrices and 12 is the 2 × 2 identity
matrix.m0,m2, and t are mass and hopping parameters, and
Vr represents a potential disorder distributed uniformly and
independently between −W=2 and W=2.
For simplicity, we have assumed the Hamiltonian,

Eq. (2), to be isotropic. In the actual computation we set
the mass and hopping parameters to m2 ¼ 1, t ¼ 2. The
linear size of the system L is taken to be 200 times the
lattice constant, which is enough to reach the thermody-
namic limit of DOS per unit volume. We also take the
average over two samples, although the statistical error is
already sufficiently small for L ¼ 200, because of the self-
averaging nature of the DOS. The order of the Chebyshev
expansion in KPM is typically a few thousand, so that the
DOS becomes smooth. The periodic boundary conditions
are imposed on each direction.
The scaling form of the density of states per volume near

the Dirac point may be derived as follows. Begin with a

FIG. 2 (color online). Density of states calculated at different
points of the phase diagram (2 ≤ W ≤ 7.5). (a) On the WTI/STI
boundary, (b) at the tricritical point, and (c) in the M phase. Its
energy dependence ρðϵÞ is quadratic on the WTI/STI boundary
(a), becoming almost linear at the tricritical point (b), while it
acquires a finite value ρð0Þ at ϵ ¼ 0 on the M side (c). We
emphasize that these DOSs are not of the surface, but of the bulk.

PRL 112, 016402 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

10 JANUARY 2014

016402-2

Density of states vs energy
From K. Kobatashi, T. Ohtsuki, K.-I. Imura and I. Herbut
(2014)

hV (r1)V (r2)i = ��(r1 � r2)

z<d/2: P.M. Ostrovsky, S.V. Syzranov, L. Radzihovsky, VG,
in preparation

these authors were also the first to write down 
the scaling ansatz for the DoS

0

Ec = 0
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1D model with long-range hopping 14
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Engineered two-dimensional Ising interactions in a
trapped-ionquantumsimulatorwithhundredsofspins
Joseph W. Britton1, Brian C. Sawyer1, Adam C. Keith2,3, C.-C. Joseph Wang2, James K. Freericks2, Hermann Uys4,
Michael J. Biercuk5 & John J. Bollinger1

The presence of long-range quantum spin correlations underlies a
variety of physical phenomena in condensed-matter systems,
potentially including high-temperature superconductivity1,2.
However, many properties of exotic, strongly correlated spin
systems, such as spin liquids, have proved difficult to study, in part
because calculations involving N-body entanglement become
intractable for as few as N < 30 particles3. Feynman predicted that
a quantum simulator—a special-purpose ‘analogue’ processor
built using quantum bits (qubits)—would be inherently suited to
solving such problems4,5. In the context of quantum magnetism, a
number of experiments have demonstrated the feasibility of this
approach6–14, but simulations allowing controlled, tunable inter-
actions between spins localized on two- or three-dimensional
lattices of more than a few tens of qubits have yet to be demon-
strated, in part because of the technical challenge of realizing
large-scale qubit arrays. Here we demonstrate a variable-range
Ising-type spin–spin interaction, Ji,j, on a naturally occurring,
two-dimensional triangular crystal lattice of hundreds of spin-half
particles (beryllium ions stored in a Penning trap). This is a com-
putationally relevant scale more than an order of magnitude larger
than previous experiments. We show that a spin-dependent optical
dipole force can produce an antiferromagnetic interaction
J i,j!d{a

i,j , where 0 # a # 3 and di,j is the distance between spin
pairs. These power laws correspond physically to infinite-range
(a 5 0), Coulomb–like (a 5 1), monopole–dipole (a 5 2) and
dipole–dipole (a 5 3) couplings. Experimentally, we demon-
strate excellent agreement with a theory for 0.05= a= 1.4. This
demonstration, coupled with the high spin count, excellent
quantum control and low technical complexity of the Penning trap,
brings within reach the simulation of otherwise computationally
intractable problems in quantum magnetism.

A challenge in condensed-matter physics is the fact that many
quantum magnetic interactions cannot currently be modelled in a
meaningful way. A canonical example is the spin liquid, an exotic state
postulated1 to arise in a collection of spin-1/2 particles residing on a
triangular lattice and coupled to each other by a nearest-neighbour
antiferromagnetic Heisenberg interaction. The spin liquid’s ground
state is highly degenerate, owing to spin frustration, and is expected
to have unusual behaviours including phase transitions at zero tem-
perature driven by quantum fluctuations15. However, despite recent
advances16,17 a detailed understanding of large-scale frustration in
solids remains elusive2,18–20.

Atomic physicists have recently provided a bottom-up approach to
the problem by engineering the relevant spin interactions in quantum
simulators5,21,22. The necessary experimental capabilities—laser cool-
ing, deterministic spin localization, precise spin-state quantum con-
trol, high-fidelity read-out and engineered spin–spin coupling—were
first demonstrated in the context of atomic clocks (see, for example,
ref. 23). In the domain of quantum magnetism, this tool set permits

control of parameters commonly viewed as immutable in natural
solids, for example lattice spacing and geometry, and spin–spin inter-
action strength and range.

Initial simulations of quantum Ising and Heisenberg interactions
with localized spins were done with neutral atoms in optical lattices6,11,
atomic ions in Paul traps9,10,13,14 and photons12. This work involved
simulations readily calculable on a classical computer: interactions
between N < 10 qubits localized in one-dimensional (1D) chains.
The move to quantum magnetic interactions on two-dimensional
(2D) lattices and between larger, computationally relevant numbers
of particles is the crucial next step but at present requires more
technological development24.

In our Penning trap apparatus, laser-cooled 9Be1 ions naturally
form a stable 2D Coulomb crystal on a triangular lattice with ,300
spins (Fig. 1). Each ion is a spin-1/2 system (qubit) over which we exert
high-fidelity quantum control25. In this paper, we demonstrate the use
of a spin-dependent optical dipole force (ODF) to engineer a continuously
tunable Ising-type spin–spin coupling Ji,j!d{a

i,j . This capability, in
tandem with a modified measurement routine (for example by more
sophisticated processing of images such as that in Fig. 1), is a key
advance towards useful simulations of quantum magnetism.

A Penning trap confines ions in a static quadrupolar electric potential
(Methods) and a strong, homogeneous magnetic field B 5 B0ẑ
(B0 5 4.46 T). Axial trapping (along z) is due to the electric field. Ion
rotation at frequency vr (about z) produces a radial restoring potential
due to the velocity-dependent Lorentz force (qv|B, where q and v are
respectively the ion’s charge and velocity). Tuning the ratio of the axial
to radial confinement allows controlled formation of a planar geometry
and, after Doppler laser cooling, the formation of a 2D Coulomb crystal
on a triangular lattice26 (Methods). We routinely generate crystals with
N ions (100=N= 350), where the valence-electron spin state of each
ion serves as a qubit25. Following techniques developed in linear (1D)
Paul traps27, spins confined in the same trapping potential are coupled
through their shared motional degrees of freedom.

Using well-controlled external fields, we engineer spin interactions
of the form

ĤB~
X

i
Bm?ŝi

ĤI~
1
N

X

ivj

Ji,jŝ
z
i ŝz

j

ð1Þ

where ŝi~(ŝx
i ,ŝ

y
i ,ŝz

i ) is the vector of Pauli matrices for ion i. We label
the qubit spin states j"æ ; jms 5 11/2æ and j#æ ; jms 5 21/2æ, where
ms is the spin’s projection along the quantizing field B0ẑ, such that
ŝz

i :ij i~ :ij i and ŝz
i ;ij i~ ;ij i. The Hamiltonian ĤB encodes an inter-

action due to an effective magnetic field, Bm (generated by externally
applied microwaves at 124 GHz), that couples equally to all spins and
permits global rotations (Fig. 1). The interaction ĤI describes a general
coupling, Ji,j, between spins i and j a distance di,j apart28,29. For Ji,j . 0

1US National Institute of Standards and Technology, Time and Frequency Division, Boulder, Colorado 80305, USA. 2Department of Physics, Georgetown University, Washington DC 20057, USA.
3Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA. 4National Laser Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa. 5Centre for
Engineered Quantum Systems, School of Physics, The University of Sydney, New South Wales 2006, Australia.

2 6 A P R I L 2 0 1 2 | V O L 4 8 4 | N A T U R E | 4 8 9

Macmillan Publishers Limited. All rights reserved©2012

H =
X

ij

J
ij

�x

i

�x

j

+B
X

i

�z

i

the coupling is antiferromagnetic and for Ji,j , 0 the coupling is
ferromagnetic.

We implement ĤI using a spatially uniform, spin-dependent ODF
generated by a pair of off-resonance laser beams with difference fre-
quency mR (Fig. 1 and Supplementary Information). The ODF couples
each ion’s spin to one or more of the N transverse (along z) motional
modes of the Coulomb crystal by forcing coherent displacements of
the ions that in turn modify the ions’ Coulomb potential energy
through the interaction

ĤODF~{
XN

i

Fz(t)ẑiŝ
z
i

Here Fz(t) 5 F0cos(mRt) is the ODF; ẑi~
PN

m~1 bi,m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=2Mvm

p

(âme{ivmtzâ{meivmt) is the axial position operator for ion i; bi,m are
elements of the N transverse phonon eigenfunctions, bm, at frequencies

vm, normalized as
PN

m~1 bi,mj j2~
PN

i~1 bi,mj j2~1 (refs 28, 29); M is
the ion mass; and B is Planck’s constant divided by 2p. The modes
include the centre-of-mass (COM) mode (v1) as well as an array of
modes of higher spatial frequencies that may be derived from atomistic
calculations (Fig. 2a) and confirmed by experimental measurement30.

For small, coherent displacements, where residual spin–motion
entanglement can be neglected29 (Methods), ĤODF is equivalent to
ĤI in equation (1): spins i and j are coupled in proportion to their spin

Top-view
detector

V = 0

V = 0

Top-view image

124 GHz

100 μm

Cooling
laser beam

ODF
laser beams

z

y B0

y

x

ωr B0

ωR

–V0
θR

ωR + μR

Figure 1 | The Penning trap confines hundreds of spin-1/2 qubits on a 2D
triangular lattice. Each qubit is the valence-electron spin of a 9Be1 ion. Bottom:
a Penning trap confines ions using a combination of static electric and magnetic
fields. The trap parameters are configured such that laser-cooled ions form a
triangular 2D crystal. A general spin–spin interaction, ĤI, is generated by a spin-
dependent excitation of the transverse (along z) motional modes of the ion
crystal. This coupling is implemented using an optical dipole force (ODF)
produced by a pair of off-resonance laser beams (left side) with angular
separation hR and difference frequency mR. Microwaves at 124 GHz permit
global spin rotations ĤB. Top: a representative top-view resonance fluorescence
image showing the centre region of an ion crystal captured in the ions’ rest frame;
in the laboratory frame, the ions rotate at vr 5 2p3 43.8 kHz (ref. 26).
Fluorescence is an indication of the qubit spin state ( |"æ, bright; |#æ, dark); here,
the ions are in the state |"æ. The lattice constant is d0 < 20mm.
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Figure 2 | Spin–spin interactions are mediated by the ion crystal’s
transverse motional degrees of freedom. a, For a 2D crystal with N 5 217 ions
and vr 5 2p3 45.6 kHz, we calculate the eigenfunctions, bm, and
eigenfrequencies, vm, for the N transverse motional modes (Supplementary
Information). Plotted here are vm and bm for the 14 highest-frequency modes.
Relative mode amplitude is indicated by colour. The COM motion is the highest in
frequency (v1 < 2p3 795 kHz); b1 has no spatial variation. The lowest-frequency
mode is v217 < 2p3 200 kHz; b217 has spatial variation at the lattice-spacing
length scale, d0 < 20mm. b, Using equation (2), we calculate Ji,j explicitly for
N 5 217 spins and plot it as a function of spin–spin separation, di,j. For
mR 2 v1 , 2p3 1 kHz, ĤODF principally excites COM motion in which all ions
equally participate: the spin–spin interaction is spatially uniform. As the detuning
is increased, modes of higher spatial frequency participate in the interaction and Ji,j

develops a finite interaction length. We find the scaling of Ji,j with di,j follows the
power law Ji,j / d{a

i,j . For mR 2 v1? 2p3 500 kHz, all transverse modes
participate and the spin–spin coupling power-law exponent, a, approaches 3. The
solid lines are power-law fits to the theory points. For comparison with other
experiments, the nearest-neighbour coupling (d0 5 20mm) is marked by the
dashed line. c–e, The power-law nature of Ji,j is qualitatively illustrated for N 5 19
(for larger N, diagrams of similar size are illegible). Spins (nodes) are joined by lines
coloured in proportion to their coupling strength for various values of a. f, For
context, the graph for a 1D nearest-neighbour Ising interaction, a well-known
model in quantum field theory, is plotted.
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We demonstrate tunable spin-spin couplings between trapped atomic ions, mediated by laser forces on

multiple transverse collective modes of motion. A !x!x-type Ising interaction is realized between

quantum bits stored in the ground hyperfine clock states of 171Ybþ ions. We demonstrate entangling

gates and tailor the spin-spin couplings with two and three trapped ions. The use of closely spaced

transverse modes provides a new class of interactions relevant to quantum computing and simulation with

large collections of ions in a single crystal.

DOI: 10.1103/PhysRevLett.103.120502 PACS numbers: 03.67.Pp, 03.67.Ac, 03.67.Lx, 37.10.Ty

Trapped atomic ion systems are a leading medium for
the generation of quantum entanglement in applications
ranging from quantum computing and communication [1]
to quantum simulations [2]. There have been several recent
demonstrations of controlled entanglement of few-ion sys-
tems [3], most involving quantum bit (qubit) state-
dependent optical forces [4,5]. Current effort is devoted
to the scaling to much larger numbers of trapped ion qubits.
One promising approach entangles small numbers of ions
through a coupling to a single mode of collective motion in
a single zone, and shuttles individual ions between differ-
ent trapping zones to propagate the entanglement [3,6]. It
may be difficult to entangle more than a few ions through a
single mode, owing to potential decoherence or uncon-
trolled coupling with the many spectator motional modes
[7]. However, it may be possible to entangle large numbers
of ions through all modes of collective motion, where
scalability relies on the high density of motional modes
and the relative insensitivity to any particular mode [8,9].

In this Letter, we demonstrate tunable spin-spin inter-
actions between two and three trapped 171Ybþ ions through
the simultaneous coupling to multiple closely spaced trans-
verse modes of motion [10,11]. We apply an optical spin-
dependent force on multiple modes of two ions and dem-
onstrate Bell state entanglement fidelities of greater than
96%. When the force operates at a frequency far-detuned
from the two modes, the motion can be adiabatically elimi-
nated from the Hamiltonian, resulting in a nearly pure spin-
spin coupling. For three ions, we create a GHZ entangled
state based on a specific synchronous quantum gate driving
all modes. We finally measure two- and three-spin Ising
dynamics and extract the effective spin-spin couplings
while varying the detuning of the spin-dependent force.
For larger numbers of ions, this type of control of the form
and range of the interaction can be applied to the simula-
tion of complex models of quantum magnetism. [12,13].

The effective spins are represented by the two ‘‘clock’’
ground states in 171Ybþ, or the jF ¼ 1; mF ¼ 0i and

jF ¼ 0; mF ¼ 0i hyperfine states of the 2S1=2 valence elec-
tron and spin–1=2 nucleus. (Here, F and mF are quantum
numbers associated with the total atomic angular momen-
tum and its projection along a weak magnetic field of
#4 G.) The 171Ybþ spins are abbreviated by the effective
spin–1=2 states j"i and j#i, respectively, having frequency
splitting !0=2" ¼ 12:643 GHz [14]. We uniformly ad-
dress the ions with two Raman laser beams where the
wave vector difference #k of the beams points along the
transverse (x) direction of trapped ion motion. Each beam
has multiple spectral components that simultaneously drive
blue and red motional sideband transitions [5], but because
the transverse modes of the ions are closely spaced, they all
contribute to the interaction.
In general, when noncopropagating laser beams have

bichromatic beatnotes at frequencies !0 $$, this can
give rise to a spin-dependent force at frequency $ [15].
Under the rotating wave approximation (!0 % $) and
within the Lamb-Dicke limit where #khx̂ii & 1, with x̂i
the position operator of the ith ion, the resulting interaction
Hamiltonian is HðtÞ ¼ @Pi!ið#k ) x̂iÞ!ðiÞ

x sin$t [10].

Here, !ðiÞ
x is the Pauli spin flip operator on ion i with

Rabi frequency !i and #k ) x̂i ¼
P

m%i;mðame*i!mt þ
aymei!mtÞ is written in terms of the normal mode phonon
operators am and aym at frequency !m. The Lamb-Dicke

parameters %i;m ¼ bi;m#k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi@=2M!m

p
include the normal

mode transformation matrix bi;m of the ith ion with the
mth normal mode [16], where

P
mjbi;mj2 ¼

P
ijbi;mj2 ¼ 1

and M is the mass of a single ion.
The evolution operator under this Hamiltonian can be

written as [8]

Uð&Þ ¼ exp
"X

i

'̂i!
ðiÞ
x þ i

X

i;j

(i;jð&Þ!ðiÞ
x !ðjÞ

x

#
; (1)

where '̂ið&Þ ¼
P

m½)i;mð&Þaym * ),
i;mð&Þam-. The first term

in Eq. (1) represents spin-dependent displacements of the
mth motional modes through phase space by an amount
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Potential rounding off of the DoS 18

A possibility was raised that the singularity in the DoS is actually rounded off.

This could be the effect of non-zero DoS. 

⇢clean(E) ⇠ E
d
↵�1 d

↵
� 1 > 1

The analysis was based
on vanishing DoS

However, exact DoS is not vanishing as E ! 0
Another argument is based on the mapping between α=2, d>4 problem and self-attracting random walks.
Self-attractive random walks are known not to have any transitions above 4D.
Oono (1976); Brydges, Slade (1995)

Yet another argument points out the absence of any order
parameter to distinguish the weak disorder and strong disorder “phases”.

irrelevant in the renormalization group sense, so that at
weak disorder a direct transition between two topologically
distinct insulating phases [4], say, between TI1 and TI2,
remains. (In the specific situation we consider below, TI1 ¼
WTI and TI2 ¼ STI.) Only above a finite strength of
disorder W > 0, does the bulk energy gap become com-
pletely filled with impurity levels, so that the insulating
phases are replaced by a diffusive metallic (M) phase [22]
(see Fig. 1). Since TI1 and TI2 are characterized by a
different topological number protected by the bulk energy
gap, at the phase boundary the bulk spectrum is in general
closed. In the present case the system is also protected by
time-reversal symmetry, and such a gap closing appears as
a (Kramers) degenerate pair of point nodes, i.e., as the
Dirac semimetal (DSM) [23] line in the phase diagram. As
disorder is increased the DSM line also terminates at the
intersection with the insulator-metal phase boundary. In the
following we focus on the evolution of the DOS as one
moves along the DSM line, through the tricritical point Pc
where the DSM line terminates, and finally reaches inside
the metallic phase.
We have previously established, by a detailed numerical

study of the conductance [22], that although disorder W
shifts the position of the phase boundary [24–29] (deter-
mined, e.g., by the position of the conductance peak), it is
nevertheless irrelevant; the peak height of the conductance
on the DSM line is not influenced by the disorder strength.
It was also found [22] that on the DSM line the DOS
remains a quadratic function of low energies, exactly as in
the clean limit [see the curves (a) in Fig. 2]. Whereas the
quadratic behavior is left intact by disorder, the coefficient
of the quadratic term, which is related to the velocity v of
Dirac electrons, is renormalized [30], as in Eq. (21) below.

In this Letter we further quantify the behavior of the
DOS on the DSM line toward the diffusive metal phase, and
demonstrate that the DOS obeys a single parameter scaling
typical of second order phase transitions, with new values
of critical exponents. Our analysis is based on the single
parameter scaling hypothesis, which is substantially sup-
ported by numerical results. The scaling behavior of the
DOS is studied using the kernel polynomial method
(KPM) [31].
The 3D disordered Z2 topological insulator is modeled

as a Wilson-Dirac-type tight-binding Hamiltonian with an
effective momentum-dependent mass term [32],

mðkÞ ¼ m0 þm2

X

μ¼x;y;z

ð1 − cos kμÞ; (1)

implemented on a cubic lattice. The topological nature of
the model is controlled by the ratio of two mass parameters
m0 and m2 such that an STI phase with Z2 (one strong and
three weak) indices [19–21] ðν0; ν1ν2ν3Þ ¼ ð1; 000Þ
appears when −2 < m0=m2 < 0, while the regime of
parameters −4 < m0=m2 < −2 falls on a WTI phase with
ðν0; ν1ν2ν3Þ ¼ ð0; 111Þ (see Fig. 1).
In real space our tight-binding Hamiltonian reads

H ¼
X

r

X

μ¼x;y;z

!
jrþ eμi

"
it
2
γμ −m2

2
γ0

#
hrjþ H:c:

$

þ
X

r

jri½ðm0 þ 3m2Þγ0 þ Vr14&hrj; (2)

where eμ is a unit vector in the μ direction, and 14 represents
the 4 × 4 identity matrix. γμ and γ0 form a set of γ matrices
in a 4 × 4 representation,

γμ ¼
"

0 σμ
σμ 0

#
; γ0 ¼

"
12 0

0 −12

#
; (3)

where σμ are Pauli matrices and 12 is the 2 × 2 identity
matrix.m0,m2, and t are mass and hopping parameters, and
Vr represents a potential disorder distributed uniformly and
independently between −W=2 and W=2.
For simplicity, we have assumed the Hamiltonian,

Eq. (2), to be isotropic. In the actual computation we set
the mass and hopping parameters to m2 ¼ 1, t ¼ 2. The
linear size of the system L is taken to be 200 times the
lattice constant, which is enough to reach the thermody-
namic limit of DOS per unit volume. We also take the
average over two samples, although the statistical error is
already sufficiently small for L ¼ 200, because of the self-
averaging nature of the DOS. The order of the Chebyshev
expansion in KPM is typically a few thousand, so that the
DOS becomes smooth. The periodic boundary conditions
are imposed on each direction.
The scaling form of the density of states per volume near

the Dirac point may be derived as follows. Begin with a

FIG. 2 (color online). Density of states calculated at different
points of the phase diagram (2 ≤ W ≤ 7.5). (a) On the WTI/STI
boundary, (b) at the tricritical point, and (c) in the M phase. Its
energy dependence ρðϵÞ is quadratic on the WTI/STI boundary
(a), becoming almost linear at the tricritical point (b), while it
acquires a finite value ρð0Þ at ϵ ¼ 0 on the M side (c). We
emphasize that these DOSs are not of the surface, but of the bulk.
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Conclusions and outlook 19

• New types of Anderson localization and critical 
behavior in higher dimensions  

• Potential rounding off of the singularities and 
crossovers instead of transitions? 

• Numerical test(s)? 

• Experiments? Kicked rotor, Dirac materials, long range 
interacting ions arranged in 1D chains? 

•Interactions?


