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The metastate and its practical use.

Summary

1. The concept of metastate.

2. Different types of metastate.

3. Metastate Averaged State (MAS) and correlation functions.

4. The numerical construction and analysis of Aizenman-Wehr

metastate.

5. A “complex” picture of finite dimensional spin glass like systems.

Numerical Construction of the Aizenman-Wehr Metastate, A.

Billoire, L. A. Fernandez, A. Maiorano, EM, V. Martin-Mayor, J.

Moreno-Gordo, G. Parisi, F. Ricci-Tersenghi and J.J. Ruiz-Lorenzo,

Phys. Rev. Lett. 119, 037203 (2017), arXiv:1704.01390.

After Aizenman-Wehr, Newman-Stein and the recent wok by Read.
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The metastate and its practical use.

We consider the standard model for spin-glasses, the Edwards -

Anderson model with Ising spins si = ±1, on a size L cube, ΛL ⊂ Z
d.

Nearest neighbor, bond disordered and strongly frustrated

Hamiltonian:

HJ ,L(s) = −
∑

〈i,j〉

Jij si sj .

Quenched couplings Jij are independent and identically distributed

random variables, Jij = ±1 with 50%. J ≡ {Jij} is a disorder

sample.

The finite-L Gibbs state

ΓJ ,L(s) =
exp(−HJ ,L(s)/T )

ZJ ,L

is a random state, as it depends on the set of random couplings J .
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The metastate and its practical use.

As discussed by Newman and Stein chaotic size-dependence (CSD)

makes difficult to take the large L limit of spin glass systems.

Take a fixed, arbitrary yet finite region (e.g. the measuring window).

The Gibbs measure over ΛW changes chaotically when the system

grows by the addition of new couplings at the boundaries, while

keeping previous couplings unaltered.

This extreme sensibility to changes at the boundaries motivated the

introduction of the metastate, a probability distribution over states

with a (hopefully) smoother L → ∞ limit.
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The metastate and its practical use.

The construction of the Aizenman-Wehr metastate.
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The metastate and its practical use.

We will use in the following the Aizenman-Wehr definition of

metastate, since it easier to implement it numerically.

The lattice ΛL is divided into an inner region ΛR, a cube of linear

size R, and an outer region.

Internal couplings:

I ≡ {Jij |i, j ∈ ΛR}

Outer couplings:

O = J \ I .

(i) we restrict our attention to the measuring window ΛW of size W ,

(ii) we average over the outer couplings, with fixed internal couplings

(iii) we “send to infinity” all three length scales while W ≪ R ≪ L

If the limit exists it is independent of the arbitrary choice for the

fixed internal couplings.
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The metastate and its practical use.

Definition of the Newman-Stein metastate.

The set of couplings J over the infinite lattice Z
d is fixed.

One considers a sequence of growing finite regions ΛL.

The Hamiltonian is truncated to the cube ΛL. Use for example free

boundary conditions.

Consider the Gibbs state, ΓJ ,L as restricted to the measuring

window ΛW .

The Newman and Stein metastate records the frequency by which

each state appears while the system size grows.

If this sequence of states converges, when the size W of the

measuring window gets large, the resulting metastate is expected to

be independent of the initial choice of couplings J (for typical J ).
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The metastate and its practical use.

Recent progresses from a rigorous point of view have been

substantial, and different techniques have been very useful.

Talagrand, building on work by Guerra has proven that Parisi

solution of the Sherrington Kirkpatrick mean field theory is correct

(that was not sure before one proved it. Obviously.).

Also, many recent results by Panchenko, about ultrametricity,

stability properties, Potts and p-spin spin glasses.

There is at least a stable foundation on which one can build.
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The metastate and its practical use.

Already for ∞ > d >= duc there are no proofs about what happens.

For duc > d > duc the situations is even more difficult. Intrinsic

complexity of the systems is resilient both to analytic and, maybe a

bit less, to numerical analysis.

Here I will not try to reach any generality, but only to show a single,

precise numerical result, with all the issue that can always affect the

implications of such results.
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The metastate and its practical use.

The “droplet” description is valid on hierarchical lattices (i.e. in the

Migdal-Kadanoff approximation) and it provides a much simpler

scenario for the low temperature phase, where the Gibbs measure is a

mixture of two spin-flip related pure states.

This is a typical Scilla and Cariddi problem. What looks relevant,

and it is recognized by all researchers in the field, is the intrinsic

complexity of the model, that makes dramatically difficult treatments

like the ones that have allowed to reach a detailed understanding of

“usual” critical phenomena.

As matter of principle the metastate approach can not only allow to

define states in a mathematically consistent way, but can also allow

to distinguish among these different physical behaviors.
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The metastate and its practical use.

Read recent work has given us the tool to use the metastate approach

in a numerical setting. We know about three mathematically

consistent pictures for the spin-glass phase.

First, the Droplet Model metastate is concentrated on a state which

is a mixture of two pure states related by the global spin-flip

symmetry, that we call “trivial”.

Second, the Chaotic Pairs picture, predicting a disperse metastate

(there is a large number of states to choose from), where each state is

trivial. This non-trivial metastate is connected to chaotic

size-dependence: by increasing L, one obtains different states.

Finally, the RSB-metastate is disperse and every state drawn from it

contains the Parisi hierarchical tree of pure states.

Alternatives to these three pictures are much limited by recent

rigorous results.
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The metastate and its practical use.

After Read one can at least partially discriminate between these

competing pictures for the metastate by studying the decay of a

correlation function (that we will define later) averaged over the

metastate

Cρ(x) ∼ |x|−(d−ζ)

for large distances |x|.

An exponent value ζ < d implies a disperse metastate.

In the RSB-metastate, the number of pure states that can be resolved

by studying a region of size W is exponentially large in W d−ζ .
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The metastate and its practical use.

In 2015 Manssen, Hartmann and Young have tried to use a

non-equilibrium approach to implement numerically the metastate

construction.

One studies large 3d spin glass systems up to L = 128 and up to long

times of t = 108 sweeps.

The authors conclude that the local behavior of a spin glass depends

on the spin configurations (and presumably also the bonds) far away.

A connection between the non-equilibrium dynamics and averages

computed theoretically using the metastate is an interesting

possibility that can only be speculated.
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The metastate and its practical use.

Recent work (November 2017) by Gertler and Machta.

There is no chaotic size dependence on hierarchical lattices, i.e. in

Migdal-Kadanoff approximation. This is implied by a bound that

guarantees convergence.

The metastate in this case is simple.

This is consistent, since we know that this situation is described by

droplet physics.
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The metastate and its practical use.

A numerical construction of the Aizenman and Wehr metastate for

the EA model in d = 3 is possible with the state of the art available

computer power.

Our construction makes precise several hints by Read.

We discuss how large the ratios of length scales L/R and R/W need

to be to uncover metastate properties.

We study the dependence on the fixed internal couplings, a crucial

issue that hast not yet been addressed quantitatively.

We make quantitative computations of overlap distributions and

correlation functions averaged over the AW metastate, thus

computing the crucial ζ exponent.

We find a value that is, in our estimated statistical and systematic

accuracy, definitively smaller than d = 3.
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The metastate and its practical use.

3d EA model endowed with periodic boundary conditions (which

makes irrelevant the location of ΛR in ΛL).

Probability distribution of ΓJ ,L at fixed internal disorder I, while

sending L → ∞ and averaging over the outer disorder O:

κI,R(Γ) = lim
L→∞

EO

[

δ(F ) (Γ− ΓJ ,L)
]

If the limit

κ(Γ) = lim
R→∞

κI,R(Γ)

exists, it does not depend on the internal disorder I and provides

the AW metastate.

The purpose of the “measuring window” ΛW is making boundary

effects irrelevant. Any measure is taken only inside ΛW , while bonds

are fixed in ΛR.
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The metastate and its practical use.

Two kind of averages: thermal averages over the Gibbs state 〈· · · 〉Γ
and averages over the metastate [· · · ]κ.

The metastate averaged state (MAS)

ρ(s)

is defined via the average 〈· · · 〉ρ ≡ [〈· · · 〉Γ]κ.

As seen from the measuring window ΛW , a state Γ(s) is a set of

probabilities {pα}α=1,...,2Wd over the spin configurations in ΛW .

In other words, it is a point on the hyperplane defined by the

equation
∑

α pα = 1, pα ≥ 0. The metastate is a probability

distribution over this hyperplane. The MAS ρ(s) is the average of

this distribution, and it is itself a point on the hyperplane (hence, the

MAS is a state itself).
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The metastate and its practical use.

We simulate the EA model with 8 ≤ L ≤ 24.

We sample spin configurations at equilibrium by a combination of

Metropolis single spin flip Monte Carlo and Parallel Tempering.

Usual Metropolis is not effective for simulating spin glass systems.

Multiple free energy barriers (precursors of ergodicity breaking and

of the appearance of multiple states) slow down the dynamics,

making it completely ineffective for large systems sizes.

Parallel tempering allow systems to trade their temperature. Copies

of the system wander in temperature space, always staying at

Boltzmann equilibrium when analyzed with respect to a given

temperature value (parallel tempering is a very civilized annealing).

In this way free energy barriers become lower for increasing

temperature and disappear when the system enters the warm phase.
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The metastate and its practical use.

We select a set of temperatures, from a Tmin < Tc up to a

Tmax > Tc. We analyze data at Tmin = 0.698 ≃ 0.64Tc.

Equilibration is a crucially delicate point. We assess it on a

sample-by-sample basis.

For improving the computational efficiency of our codes we use

multi-spin coding techniques (both multi-sample, MUSA and

multi-site, MUSI).

We repeat the computation for NI = 10 different internal couplings I

samples (indexed by 0 ≤ i < NI) and, for each of these, we use

NO = 1280 different outer disorder O realizations (indexed by

0 ≤ o < NO). For each sample we simulate m = 4 distinct replicas.

We take NI ≪ NO because we expect all inner disorder samples to

be “typical” when computing metastate averages at R ≫ 1. We find

however sizable sample to sample fluctuations for the system sizes we

consider.
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The metastate and its practical use.

The average over the Gibbs state 〈· · · 〉Γ is estimated via Monte Carlo

thermal averages 〈· · · 〉 at fixed disorder J , i.e. for given indices i and

o.

The average over the metastate is given by [· · · ]κ =
∑

o
(· · · )/NO,

and the one over the internal disorder by (· · · ) =
∑

i
(· · · )/NI .

The MAS spin correlation function is given by

Cρ(x) = [〈s0sx〉Γ]
2
κ =

1

NI

∑

i

(

1

NO

∑

o

〈si;o0 si;ox 〉

)2

=

=
1

NI

∑

i

1

N 2
O

∑

o,o′

〈si;o0 si;ox si;o
′

0 si;o
′

x 〉 ∼ |x|−(d−ζ) ,

defining Read ζ exponent for |x| ≫ 1.

January 2018 KITP Santa Barbara Page 19



The metastate and its practical use.

Measure in ΛW the overlaps between any two real replicas σ and τ

sharing the same internal disorder (indexed by i) and having

external couplings indexed by o and o
′

qi;o,o′ ≡
1

W 3

∑

x∈ΛW

σi;o
x τi;o

′

x .

For each {i; o, o′}, we have m(m− 1)/2 contributions from different

pairs of real replicas if o = o
′ and m2 otherwise.
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The metastate and its practical use.

The main objects of our numerical study are the probability density

functions of the overlaps:

P (q) =

∑

i
Pi(q)

NI
, Pi(q) =

1

NO

∑

o

〈δ(q − qi;o,o)〉,

Pρ(q) =

∑

i
Pρ,i(q)

NI
, Pρ,i(q) =

1

N 2
O

∑

o,o′

〈δ(q − qi;o,o′)〉.

P (q) is the usual window pdf already measured in many numerical

simulation of spin glasses, Pρ(q) is the pdf of the overlap over the

MAS. Although Pρ(q) → δ(q) for W → ∞, the scaling of its variance

is informative

χρ =
∑

x∈ΛW

Cρ(x) = W d

∫

q2Pρ(q) dq ∼ W ζ .
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The metastate and its practical use.
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Main plot: The MAS overlap distribution Pρ(q) with R = 12 at T = 0.698 ≃ 0.64Tc

shows no statistical significant dependence on the lattice size L (the error bars,

computed from fluctuations on I, are shown for one value of q only for sake of clarity).

Insets: Pρ,i(q) for two specific configurations of the inner disorder I (the error bars,

computed from fluctuations on O, are smaller than the data points).
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The metastate and its practical use.

So, we have some control on finite (total) size effects.

The MAS Pρ(q) measured with R = 12 and both L = 24 and L = 16

are statistically compatible, suggesting that R/L = 3/4 is already a

safe choice.

The error bars are large, because the dependence of Pρ,i(q) on the

internal disorder sample is very strong for the values of W and R we

are using (as shown by the insets).
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The metastate and its practical use.
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Main plot: Collapse of MAS susceptibility measured with R = L/2 at

T ≃ 0.64Tc.

Inset: Deviations from the asymptotic behavior only for R/L > 3/4.

January 2018 KITP Santa Barbara Page 24



The metastate and its practical use.

MAS susceptibility χρ

Inset: fixing R = 12, all data with R/L ≤ 3/4 are statistical

compatible, while data with R/L = 6/7 show significant deviations

even for small W values. We safely fix R = L/2.

The main panel shows χρ for R = L/2 (i.e. R ≪ L) and different

ratios W/R.

Data have been rescaled as

χρ(W,R) = Rζf(W/R) ,

with f(x) ∝ xζ for x ≪ 1.

The physical behavior we expect in the limit W/R ≪ 1 actually

extends up to W/R ≈ 0.75, where corrections to the asymptotic

power law appear. Fitting data with W/R < 0.75 we estimate Read

exponent

ζ = 2.3± 0.3
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The metastate and its practical use.
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Pρ(q) and P (q) for L = 24, R = L/2, T = 0.698 and different values

of the measuring window size, W = 4, 8, 12.

These would be equal in a trivial metastate... (probably our

strongest evidence towards a dispersed metastate).
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The metastate and its practical use.

State-of-the-art numerical simulations of spin glasses in d = 3 allow

for the construction of the AW metastate.

Numerical data suggest that the limiting conditions

1 ≪ W ≪ R ≪ L can be implemented as W/R,R/L ≈ 3/4.

From the numerical construction of the AW metastate we have

obtained quantitative information on the nature of the spin glass

phase in d = 3.

The metastate average overlap distribution P (q) and the MAS Pρ(q)

are significantly distinct objects already at moderate lattice sizes.

We cannot extrapolate safely to the thermodynamic limit, and

sample to sample fluctuations are still important at the accessible

system sizes.

We have exhibited a convincing scaling law for the MAS

susceptibility, and an estimate of ζ(d = 3) = 2.3(3), suggesting ζ < d.
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The metastate and its practical use.
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The exponent ζ as a function of d.
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The metastate and its practical use.

The exponent ζ is related to the number of different states that can

be measured in a system of size W as lognstates ∼ W d−ζ .

Such a number diverges in the thermodynamic limit as long as ζ < d,

supporting the picture of a metastate with infinitely many states.

In the figure we have summarized our knowledge about the ζ

exponent.

At and above the upper critical dimension dU = 6, where mean field

exponents are correct, ζ = 4.

Assuming ζ(d) is a continuous and monotonically non-decreasing

function, the inequality ζ < d still holds slightly below dU .

We have found ζ(d = 3) = 2.3(3).
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The metastate and its practical use.

An alternative estimate of the ζ exponent comes from the decay of

the 4-spins spatial correlation function conditional to the q = 0 sector

C4(x) = [〈σi;o
0 τi;o0 σi;o

x τi;ox 〉Γ|qi;o,o=0]κ ∼ |x|−(d−ζq=0)

for |x| ≫ 1: ζq=0(d = 3) = 2.62(2) and ζq=0(d = 4) = 2.97(2).

Read conjecture: ζq=0 = ζ. These estimates are shown by red points.

A gentle interpolation of the ζ estimates (dashed line) seems to meet

the ζ = d condition very close to the current best estimate for the

lower critical dimension dL ≈ 2.5 (see for example Franz, Parisi and

Virasoro 1994, Boettcher, PRL 2005, Maiorano and Parisi, 2017,

arXiv:1711.05590, submitted to PNAS).
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The metastate and its practical use.

We have a new tool to analyze systems of very high complexity, like

spin glasses.

Both quantitative and qualitative hints can be obtained.

A consistent picture emerges from this study.

Determination of ζ, shape of P (q) and of the MAS averaged Pρ(q),

ζq=0.

What I believe is clear and important is the inherent high complexity

of spin glass like systems.
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