
“If any one faculty of our nature may be called more wonderful 
than the rest, I do think it is memory. ... 
our powers of recollecting and of forgetting do seem peculiarly 
past finding out.”                                          

                                                        Jane Austin -- Mansfield Park

Discussion on memory formation in matter 
Sidney Nagel 

Basic operations: imprinting, reading and erasure of information 

1)   Examples of memories: some trivial some not 
 - similarities and distinctions 

2)   General questions



Stone and chisel 
Paper and pencil (erasable) or pen (non-erasable) 
Photograph 
Phonograph record: analog or digital (needs a code for retrieval) 

Computer:  
Flipping magnetic domains 
ROM 
RAM or DRAM 
Volatile vs. non-volatile 
First in / first out  or  first in / last out 

Some examples of memories in matter



Sheared viscous fluid 
More examples of memories in matter



Echoes —  time stored in coherence of oscillators 
                   2-state spin or photon; (anharmonic) phonon; quench echoes… 

More examples of memories in matter

JUSTIN C. BURTON AND SIDNEY R. NAGEL PHYSICAL REVIEW E 93, 032905 (2016)

FIG. 4. Proxy for echo amplitude |G2τ |, normalized by the first
pulse amplitude A1, as a function of "τα [see Eq. (19)]. Over a broad
range of values for the ratio of pulse amplitudes α, the maximum echo
occurs for 1 < "τα < 2.

second pulse (π pulse) should be twice as large as the first
(π/2 pulse), given they are the same duration.

V. ECHOES IN MODEL GLASSES

The discussion up to this point has only considered
isolated, independent, anharmonic oscillators. We now turn our
attention to echoes in model glasses. We emphasize here that
each “oscillator” is a normal vibrational mode of the disordered
solid. The echo signal is the sum of the vibrational motion of
all of the excited modes. For very small amplitudes, each
mode is linearly independent. However, for larger amplitudes
they will necessarily couple energy between different modes,
invalidating our analysis in the previous section. As illustrated
by Fig. 3, the normal modes are naturally anharmonic, so that
an echo should be observable so long as the amplitude of each
mode is not too large, and they remain linearly independent.

When excited by an acoustic pulse near T = 0, a single
vibrational mode will increase in amplitude, and the final
amplitude of vibration will depend on the difference between
the frequency of the oscillator and the frequency of the exciting
pulse, in addition to the spatial coupling to the polarization of
the excitation [Eq. (3)]. The number of modes excited by a
given pulse is inversely proportional to the duration of the
pulse. For long pulses, only modes with frequencies near
the excitation frequency will be driven to large amplitudes,
whereas for short pulses, many modes of different frequencies
will be excited (e.g., a δ-function pulse will excite modes of
all frequencies equally).

A second pulse at a later time can either increase or decrease
the amplitude of an individual mode, depending on the phase
difference between the mode and the excitation. An echo
will be formed by the average of an ensemble of vibrational
modes, which become coherent at a later point in time. For
systems composed of 1000 particles, we found that averaging
over 10 000 independent systems was necessary in order to
achieve a sufficient echo signal above the background noise.
Figure 5(a) shows the averaged amplitude at two different
values of pulse separation τ . Both pulses have identical
amplitudes (F0 ≈ 5 × 10−5), and identical pulse durations:

FIG. 5. (a) Echo amplitude, normalized by Pmax vs. time for
two different values of pulse spacing τ . A third example, with an
intermediate value of τ , is shown in Fig. 1(a). Each signal is the
average of 10 000 independent systems, each composed of 1000
particles. The pulse width is tp = 45 cycles, and the pulse frequency
is ω0 = 0.025. (b) Normalized echo amplitude vs. τ . The error bars
represent the size of the noise between the second pulse and the echo.
The red line is a fit to the data using Eq. (21).

tp = 45 cycles (this value for tp was chosen because it was
close to the value used in the original experiments which
observed phonon echoes at low temperatures in glasses [22]).
In both plots, the echo is apparent at t ≈ 2τ . Taking into
account the finite pulse width (tp), the exact position of the
echo is 2τ + 2tp, since τ is measured from the center of each
excitation pulse and the first pulse begins at t = 0.

Figure 5(b) shows the echo amplitude (normalized by Pmax)
as τ is varied. This dependence can be understood using
Eq. (20). We fit the data to the form

|A2τ | = K1

√
J1(K2τ )2 + J2(K2τ )2, (21)

where K1 and K2 are fitting parameters. The best fit is shown
by the red line in Fig. 5. This is essentially the same curve as
the red line in Fig. 4. The error bars represent the average noise
in the amplitude in the region between the second pulse and
the echo. Although Eq. (21) is derived from the dynamics of
a single oscillator, both K1 and K2 represent an average over
the different modes excited by the pulses. Since K1 ∝ A1,
and A1 represents the initial amplitude, its value will vary
considerably from mode to mode. However, K2 will be more
uniform since it represents the frequency shift, ", and only
modes that satisfy "τ ≈ 1 will contribute to the echo.
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J. Burton, SRN PRE 2016 “Echoes from anharmonic normal modes in model glasses”  



Memory and rejuvenation in glasses

More examples of memories in matter

L.-N. Zou, SRN PRL  2010  “Thermally activated sorting”

found in the magnetic and dielectric spectroscopies of spin
glasses and glass-forming liquids [10–15].

At low T, the relaxation time of a glassy system is longer
than the experimental time scale, and the glass is out of
equilibrium. The properties of a glass are thus not sta-
tionary but depend on the experimental time scale (aging),
and on the thermal history (memory). A particularly strik-
ing manifestation of these features is found in the ‘‘reju-
venation and memory’’ phenomenon, first observed
experimentally in the magnetic susceptibilities of spin
glasses, and subsequently in the dielectric susceptibility
of organic glass formers [16–19]. If, on cooling a glass
from a high-T equilibrium state, the cooling is halted at
T ¼ Tage and kept there for a period !age, then as the glass
ages, the (magnetic or dielectric) susceptibility, "00, slowly
decreases in magnitude. When cooling is resumed, after

some time, the system appears to forget the aging experi-
ence and "00ðTÞ reverts to the reference behavior it would
have exhibited had the cooling been uninterrupted: the
system is said to be ‘‘rejuvenated.’’ If the glass is subse-
quently reheated, "00ðTÞ initially follows the reference
curve. However, as T approaches Tage, "

00ðTÞ will mirror
the aging-induced dip—it remembers its cooling history.
While seen in many experiments and subjected to several
theoretical models, this phenomenon has proven difficult,
if not impossible, to observe unambiguously even in so-
phisticated spin-glass simulations [20–27].
Figure 2 shows thermosort can clearly reproduce mem-

ory and rejuvenation, using only N ¼ 30. Figure 2(a)
shows "00

MðTÞ (averaged over many realizations) both in
the reference behavior, when cooling is continuous, and
when cooling was interrupted at Tage and the system is
allowed to age. In order to see the results more clearly,
Fig. 2(b) plots the difference between the aged and refer-
ence "00

MðTÞ curves for two different values of Tage. The
aging dip stands out clearly, and at low temperatures there
is rejuvenation as the aging curve reverts to the reference
one. On reheating, the memory dip is recovered, and it is
clear that the memory dip tracks Tage. Other, less complex
glassy effects, such as memory and annealing after step-
wise shifts in T, the Kovacs effect, thermoremanent mag-
netization, irreversible or reversible dynamics (as found in
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FIG. 2 (color online). Aging, rejuvenation, and memory in
thermosort, measuring "00

MðTÞ at f ¼ 4$ 103 versus T. Here T
is ramped in steps of !T=!dw ¼ 1=103. (a) Dotted curve: refer-
ence "00

MðTÞ without aging. Solid curve: cooling was interrupted
at Tage ¼ 150 for a duration !age ¼ 4$ 104, allowing "00

MðTÞ to
age, forming a dip. Warming back up, the aged "00

MðTÞ system-
atically dips below the reference in the vicinity of Tage. (b) The

difference between the aged and reference "00
MðTÞ, obtained for

two different values of Tage (dotted line, cooling; solid line,

warming). Data shown are ensemble-averaged over 105 realiza-
tions for N ¼ 30 and g ¼ 0.
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FIG. 1 (color online). Glassy dynamics for N ¼ 8.
(a) Relaxation of hH0i, starting from random configurations, at
various T; g ¼ 0 except for the dashed line at T ¼ 5. (b, c) The
complex susceptibility ~"M versus T, measured by ramping from
T ¼ 50 to T ¼ 0 and back in steps of !T ¼ 1, and dwell time
per temperature step !dw ¼ 104. The dashed line in (b) indicates
the equilibrium "M in the dc limit. (d, e) The equilibrium
spectrum of ~"M at different T. Lines are Havriliak-Negami fits
[12]. The inset of (e) plots the inverse peak frequency 1=fp ¼ !p
of "00

MðfÞ versus 1=T. Data shown are ensemble-averaged over
103 realizations.
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FIG. 1. Out-of-phase susceptibility x

00 of the CdCr1.7In0.3S4
spin glass. The solid line is measured upon heating the
sample at a constant rate of 0.1 Kymin (reference curve). Open
diamonds: the measurement is done during cooling at this same
rate, except that the cooling procedure has been stopped at 12 K
during 7 h to allow for aging. Cooling then resumes down to
5 K: x

00 is not influenced and goes back to the reference curve
(chaos). Solid circles: after this cooling procedure, the data is
taken while reheating at the previous constant rate, exhibiting
memory of the aging stage at 12 K.

Thus, aging at T1 ≠ 12 K has not influenced the result at
lower temperatures (“chaos” effect).
The surprise is that when the sample is reheated at a

constant heating rate (i.e., no further stops on the way
up), we find that the trace of the previous stop (the dip
in x

00) is exactly recovered (see Fig. 1). The memory
of what happened at T1 ≠ 12 K has not been erased
by the further cooling stage, even though x

00 at lower
temperatures lies on the reference curve. The system can
actually retrieve information from several stops if they
are sufficiently separated in temperature. In Fig. 2, we
show a “double memory experiment,” in which two aging
evolutions, one at T1 ≠ 12 K and the other at T2 ≠ 9 K,
are retrieved [13]. In the inset of Fig. 2, the result of a
similar experiment on a Cu:Mn sample is shown [11].
As discussed above, the cooling rate dependence of

the dynamics in spin glasses is largely governed by the
chaos effect. For example, it has been shown that there
is no difference in the aging behavior if the spin glass has
been directly quenched from above T

g

or if it has been
subjected to a very long waiting pause immediately below
T

g

[7]. However, the influence of the cooling rate was not
quantitatively characterized in systematic measurements,
and this point is of a particular interest for the comparison
between spin glasses and other glassy systems. We have
therefore performed the following experiment. We cool
the sample progressively and continuously (in fact, by
steps of 0.5 K) from above T

g

to 12 K ≠ 0.72T

g

, using
three very different cooling rates. The result is shown
in Fig. 3. The initial values of x

0 and x

00 are indeed

FIG. 2. Same as in Fig. 1 (CdCr1.7In0.3S4 insulating sample),
but with two stops during cooling, which allow the spin glass to
age 7 h at 12 K and then 40 h at 9 K. Both aging memories are
retrieved independently when heating back (solid circles). The
inset shows a similar “double memory” experiment performed
on the Cu:Mn metallic spin glass [11].

different: Slower cooling yields a smaller initial value of
the susceptibility, a value that is closer to “equilibrium.”
A small horizontal shift of the curves along the time scale
allows the superposition of the three of them; the curves
obtained after a slower cooling are somewhat “older.”
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FIG. 3. x

00 relaxation at 12 K as a function of time: effect of
the cooling rate on aging. The CdCr1.7In0.3S4 sample has been
cooled from above T

g

≠ 17 to 12 K at very different speeds:
2.6 Kymin (solid circles), 0.08 Kymin (crosses), 0.015 Kymin
(open diamonds). In the inset, another procedure is used which
shows that this cooling rate effect is due only to the last
temperature interval: constant rate of 0.8 Kymin (solid circles)
or 0.08 Kymin (open diamonds) from 17 to 14 K, but in both
cases rapid quench from 14 to 12 K.
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Chaos Effects in Spin Glasses” 
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Figure 3 | Set-up of experiment used to measure an n= 2 vibration.
a, Schematic diagram: a bubble is blown slowly from a slot-shaped nozzle,
back-lit and imaged with two high-speed cameras. b, Images of bubble
while it is attached to this slot nozzle. The cross-section of the neck is
extended along the slot.

The unusual vibration modes found here are natural
consequences of nearly integrable Hamiltonian dynamics. Previous
analyses have shown that, when vorticity effects are absent, the
evolution of an air–water interface is Hamiltonian16. This means
that the time evolution of the void surface when the surface is
slightly distorted from a perfect circle corresponds to a nearly
integrable Hamiltonian dynamics. According to the Kolmogorov–
Arnold–Moser theorem, the complete memory possessed by an
integrable Hamiltonian evolution is not destroyed by a small
perturbation to the Hamiltonian, regardless of the specific form
of the perturbation17. Instead, the memory is largely preserved.
Specifically, almost all of the trajectories in the phase space,
which describe the time evolution of the system for various initial
conditions, survive under very general conditions on the form
of the perturbation. Only a special set of trajectories, which are
evenly distributed throughout phase space and correspond to
‘resonant tori’, are destroyed. Typically, this persistence of memory
is evident only in terms of transformed variables. What is gratifying
about bubble disconnection is that, because it is associated
with a finite-time singularity, the preservation of memory is
apparent in a straightforward physical effect, the freezing of the
vibration amplitudes.

As the most efficient way to concentrate energy is to work
with a dynamics with high spatial symmetry, many energy-focusing
hydrodynamic singularities are integrable. They therefore should
also supportmemory-encoding vibrations.We have checked this by
looking at the shape-stability spectrum of three previously analysed
examples: the collapse of a spherical bubble8 and the implosion of
cylindrical18 and spherical shock waves19. In every case, the relative
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Figure 4 | Disconnection dynamics from a slot nozzle. a, Average radius at
the minimum of the bubble neck produced by disconnection from a slot
nozzle (red plus signs) and radius at the minimum of the cylindrically
symmetric neck produced by disconnection from a circular nozzle (blue
crosses) as a function of time before disconnection t⇤ � t. The solid line is
the calculation using equation (2) with E = 13 dynes (curve displaced
downwards for clarity). b, The measured difference between the neck
radius from the two orthogonal views, 1R, as a function of the averaged
radius R̄ (14 different data sets are included). The solid black line shows the
linear stability result.

amplitudes of the vibrations freeze whereas the frequencies chirp as
the singularity approaches. (In the collapse of a spherical bubble and
a spherical shock wave the absolute scale of the mode amplitudes
increases weakly as the singularity approaches. This does not affect
the memory-encoding mechanism, because the relative amplitudes
of the vibrational modes are preserved.)

These results suggest that memory-encoding vibrations should
be a generic feature of energy focusing and may provide a rubric
for thinking about the role of asymmetry in more complex
processes, such as the development of a supernova20–22, jetting
due to the collapse of a cavity in granular matter23,24 and
inertial fusion implosion25.

In contrast to the situations listed above, the bubble
disconnection process analysed here is far more tractable for
experimental investigation, making it possible for us to excite and
measure one of the memory-encoding vibrational modes directly.
This example reveals that, under competing demands of complete
memory in integrable systems and the universal dynamics near
a singularity, nature reaches a Solomonic decision. Half of the
information about the early history is preserved by the vibrational
mode amplitudes, whereas the other half, corresponding to the
phases of the different vibrationalmodes, is scrambled.

NATURE PHYSICS | VOL 5 | MAY 2009 | www.nature.com/naturephysics 345

Laura Schmidt, Nathan Keim. Wendy Zhang, SRN  Nature Phys. (2009) “Memory-encoding vibrations in 
a disconnecting air bubble “

Dynamical systems - remembers or forgets initial conditions (nature vs. nurture)

More examples of memories in matter
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Figure 3 | Set-up of experiment used to measure an n= 2 vibration.
a, Schematic diagram: a bubble is blown slowly from a slot-shaped nozzle,
back-lit and imaged with two high-speed cameras. b, Images of bubble
while it is attached to this slot nozzle. The cross-section of the neck is
extended along the slot.

The unusual vibration modes found here are natural
consequences of nearly integrable Hamiltonian dynamics. Previous
analyses have shown that, when vorticity effects are absent, the
evolution of an air–water interface is Hamiltonian16. This means
that the time evolution of the void surface when the surface is
slightly distorted from a perfect circle corresponds to a nearly
integrable Hamiltonian dynamics. According to the Kolmogorov–
Arnold–Moser theorem, the complete memory possessed by an
integrable Hamiltonian evolution is not destroyed by a small
perturbation to the Hamiltonian, regardless of the specific form
of the perturbation17. Instead, the memory is largely preserved.
Specifically, almost all of the trajectories in the phase space,
which describe the time evolution of the system for various initial
conditions, survive under very general conditions on the form
of the perturbation. Only a special set of trajectories, which are
evenly distributed throughout phase space and correspond to
‘resonant tori’, are destroyed. Typically, this persistence of memory
is evident only in terms of transformed variables. What is gratifying
about bubble disconnection is that, because it is associated
with a finite-time singularity, the preservation of memory is
apparent in a straightforward physical effect, the freezing of the
vibration amplitudes.

As the most efficient way to concentrate energy is to work
with a dynamics with high spatial symmetry, many energy-focusing
hydrodynamic singularities are integrable. They therefore should
also supportmemory-encoding vibrations.We have checked this by
looking at the shape-stability spectrum of three previously analysed
examples: the collapse of a spherical bubble8 and the implosion of
cylindrical18 and spherical shock waves19. In every case, the relative
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Figure 4 | Disconnection dynamics from a slot nozzle. a, Average radius at
the minimum of the bubble neck produced by disconnection from a slot
nozzle (red plus signs) and radius at the minimum of the cylindrically
symmetric neck produced by disconnection from a circular nozzle (blue
crosses) as a function of time before disconnection t⇤ � t. The solid line is
the calculation using equation (2) with E = 13 dynes (curve displaced
downwards for clarity). b, The measured difference between the neck
radius from the two orthogonal views, 1R, as a function of the averaged
radius R̄ (14 different data sets are included). The solid black line shows the
linear stability result.

amplitudes of the vibrations freeze whereas the frequencies chirp as
the singularity approaches. (In the collapse of a spherical bubble and
a spherical shock wave the absolute scale of the mode amplitudes
increases weakly as the singularity approaches. This does not affect
the memory-encoding mechanism, because the relative amplitudes
of the vibrational modes are preserved.)

These results suggest that memory-encoding vibrations should
be a generic feature of energy focusing and may provide a rubric
for thinking about the role of asymmetry in more complex
processes, such as the development of a supernova20–22, jetting
due to the collapse of a cavity in granular matter23,24 and
inertial fusion implosion25.

In contrast to the situations listed above, the bubble
disconnection process analysed here is far more tractable for
experimental investigation, making it possible for us to excite and
measure one of the memory-encoding vibrational modes directly.
This example reveals that, under competing demands of complete
memory in integrable systems and the universal dynamics near
a singularity, nature reaches a Solomonic decision. Half of the
information about the early history is preserved by the vibrational
mode amplitudes, whereas the other half, corresponding to the
phases of the different vibrationalmodes, is scrambled.
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Dynamical systems - remembers or forgets initial conditions (nature vs. nurture)

More examples of memories in matter



Return-point memory in magnets (and bi-phasic fluid flow in random porous 
media) 

Nested hysteresis curves 

More examples of memories in matter



Return-point memory in magnets (and bi-phasic fluid flow in random porous 
media) 

Nested hysteresis curves 

Associative memory in neural nets (Hopfield model) 
Need only partial information to find the full memory 

More examples of memories in matter



Pulse duration memory 
Current always rises when voltage turned off  

More examples of memories in matter

  I

Time (µs)

R. M. Fleming, L. F. Schneemeyer PRB 1986 

S, N Coppersmith, Peter Littlewood PRB 1987

NbSe3



Multiple transient memories (charge density waves; non-Brownian Suspensions) 
Remembers multiple inputs for a while, then forgets all but two of them.  If noise, all 
inputs retained indefinitely.

More examples of memories in matter
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aM. Povinelli, S. Coppersmith, L. Kadanoff,  
SRN, S. Venkataramani, Phys. Rev. E (1999)  
“ Noise Stabilization of Self-Organized Memories,” .

Nathan Keim, Joseph Paulsen, SRN Phys. Rev. E (2013)  
“Multiple transient memories in sheared suspensions: robustness, structure, and routes to plasticity,”



magnetic systems exhibiting memory effects [5], earth-
quakes, and deformations in amorphous solids leading to
plastic flow [12,15–18].
The BMLJ samples consist of N ¼ 4000 Lennard-Jones

particles interacting with a Kob-Andersen choice of param-
eters, cutoff, and composition as in Refs. [13,19]. The
density is equal to 1.2 (in reduced units) so that the system
is much denser than the suspensions studied in Refs. [9,11].
These are equilibrated at a constant temperature T ¼ 0.466
via molecular dynamics in the NVT ensemble using
LAMMPS [20]. The equilibrated configurations are then
minimized in energy using a conjugate-gradient algorithm,
and the deformation is carried out by means of an athermal-
quasistatic [15] procedure where the strain γxy is incre-
mented in steps of dγxy ¼ 2 × 10−4 by affinely deforming
particle positions, updating boundary conditions, and
minimizing the energy via conjugate-gradient at each step.
Systems are initially shear deformed by varying the strain
between −γ1 and γ1 for a certain number of full deforma-
tion cycles (the “training” phase). Alternatively, we per-
form the oscillatory training at two amplitudes (γ1 and γ2)
through a specified repeat sequence. The values of the γi
are chosen to be below the critical value γc [13], the
value under which the system is guaranteed to reach a
reversible state for a sufficiently large number of oscil-
lations. After that, samples are subjected to a single cycle of
amplitude γ (“reading” phase). We monitor the changes in
the sample during a reading cycle of amplitude γ by
measuring the mean squared displacement (MSD) of the
particles, averaged over several samples.
The NK model, on the other hand, is a spin model

characterized by (an even number of) N lattice sites
occupied by spins mi that can take the values 0 or 1 with
the constraint

P
imi ¼ N=2 (not present in Ref. [14]). Each

spin has K neighbors m1
i ;…; mK

i , and the energy of the
system E ¼ Eðm1; :::::; mNÞ is defined as

E ¼ − 1

2N

XN

i¼1

½1þ sin ð2πðai þ γNKbiÞÞ&; (1)

where γNK is the value of the “shear strain,” and the values
ai and bi depend on the ith spin and its neighbors, i.e.,
fmi;m1

i ;…; mK
i g, according to the maps a and b

f0; 1gKþ1 →
a ½−1; 1&; (2)

f0; 1gKþ1 →
b ½0; 1& (3)

that associate every possible binary (K þ 1)-tuple to a random
value chosen with uniform probability in the intervals written
above.TheenergyinEq.(1) impliesanenergylandscapewhere
theroughnessgrowswiththeparameterK.Thestrainparameter
γNK changes the energy continuously, and allows one to
perform trainings and reads as in the BMLJ case. Two NK
configurationsareconsideredneighboring if theyareconverted

to the other by the application of a single Kawasaki exchange
move [21]. Equilibrated configurations can be obtained by
performingaMonteCarlorunat temperatureT usingKawasaki
moves. For each of these, the associated inherent structures
(local energy minima) are found by steepest descent with
Kawasaki moves and their average energies depend on the
equilibration temperature T in qualitative agreement to model
glassy systems.Weperformoscillatory athermal deformations
onNKsamples (withN ¼ 20,K ¼ 10), starting from inherent
structures obtained from configurations equilibrated at
T ¼ 1. γNK is incremented in steps dγNK ¼ 0.005 and the
energy isminimized at each step. Different NK configurations
at γNK ¼ 0 are compared by measuring their Euclidean
distance d divided by N. d2=N is the direct analogue to the
MSD of the BMLJ case.
Results for different training for the BMLJ and the NK

model are presented in Fig. 1. It can be noticed [see Fig. 1(a)]
that the BMLJ samples trained with a maximum ampli-
tude γ1 ¼ 0.06 are not necessarily stable under cycles of
amplitude γ < γ1 since the MSD is not zero for such γ and,

FIG. 1 (color online). MSD and distance d (scaled by N)
between configurations before and after a reading cycle as a
function of the amplitude γ, starting from samples trained by
oscillatory deformation at (a) γ1 ¼ 0.06 for the BMLJ model and
(b) γ1 ¼ 0.3 for the NK model. The value at which the training is
performed can be easily read, and configurations can be altered
by cycles of amplitude γ < γ1, even if obtained after a long series
of training oscillations.

PRL 112, 025702 (2014) P HY S I CA L R EV I EW LE T T ER S
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More examples of memories in matter

Multiple transient memories in jammed solids

Davide Fiocco, Giuseppe Foffi, and Srikanth Sastry PRL (2014)  “Encoding of Memory in Sheared Amorphous 
Solids”
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compaction rate increased: not only does the compaction
rate decrease, but it also becomes negative (i.e., the sys-
tem dilates). Note that after several taps the “anomalous”
dilation ceases and there is a crossover to the “normal” be-
havior, with the relaxation rate becoming the same as in
constant-G mode.

These data constitute a short-term memory effect: the
future evolution of r after time t0 depends not only on
r!t0", but also on information about the previous tapping
history, contained in other “hidden” variables. In order to
demonstrate this in a more explicit manner, we modified
the above experiment. In this second set of three experi-
ments the systems were driven to the same density r0 with
three different accelerations G0, G1, and G2. After r0 was
achieved at time t0, the system was tapped with the same
intensity G0 for all three experiments. As seen in Fig. 2,
the evolution for t . t0 strongly depends on the prehis-
tory. The need for extra state variables in the problem
is consistent with strongly non-Lorentzian behavior of the
fluctuation spectrum, observed in earlier experiments [3].

To give a theoretical interpretation of the above re-
sults, we view the problem as an evolution in the space of
discrete “microscopic” states corresponding to different re-
alizations of the packing topology (in addition to the topo-
logical changes, there are continuous deformations of the
network, which we assume to relax on the time scale of
a single tap [8]). For each tap there is a possibility for a
transition from one microscopic state to another. Since the
dynamics is dissipative and the system is under external
gravity, a transition to a denser configuration is typically
more probable than the reverse one. We now introduce the
concept of a baseline configuration (BC), which plays the
role of a local free energy minima for our nonthermal sys-
tem. Namely, a BC may be defined as a state where any
transition to a different configuration has a lower proba-
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FIG. 2. The time evolution of packing fraction r for a sys-
tem which was compacted to r0 ! 0.613 at time t0 using three
different accelerations: G1 ! 1.8 (circles), G0 ! 4.2 (triangles),
and G2 ! 6.3 (diamonds). After the density r0 was achieved,
the system was vibrated at acceleration G0. The evolution for
t . t0 depended strongly on the prehistory. Each curve is an
average over four experimental runs.

bility than the reverse one. Hence, there is a mesoscopic
time scale on which the system gets trapped in the vicinity
of a given BC, and its evolution is dominated by a number
of flip-flop modes, i.e., local “excitations” of the baseline
structure, any of which would normally relax back to the
same BC.

Neglecting the coupling between individual flip-flop
modes, we may replace the complicated configuration
space with a set of independent two-state systems,
each of which is characterized by two transition rates,
ke!g . kg!e. ke!g#kg!e gives the ratio of the equilib-
rium probabilities of populating each state: “ground” and
“excited” (with BC corresponding to all modes at their
ground state). As we have argued, the higher probability
ground state is typically the one with higher density, i.e.,
the volume change y between the ground and the excited
states is normally positive. Our no-coupling approxima-
tion is close in its spirit to a number of two-state models
recently proposed by several research groups [9].

Obviously, the experimentally observed density is dif-
ferent from that of the current BC, rb , due to a nonzero
fraction of excited modes:
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The summation here is performed over all the flip-flop
modes of a given BC, V is the total volume, and y!n" is
the volume difference between the excited and the ground
states of the nth mode. Assuming that the vibration in-
tensity G is a qualitative analog of temperature, we expect
the population of the excited states, P!G" ! $1 1 k!n"

g!e#
k!n"

e!g%21, to grow with G, starting from zero at G ! 0.
Hence, for a given rb , the total density r will be lower
at higher acceleration. This explains the observed anoma-
lous compaction following an abrupt change of G. After
a switch from G1 to G2 at time t0 ! 0, the flip-flop mode
contribution to the total density, GG1,G2!t", would relax to
its new equilibrium value in the following way:

GG1,G2!t" ! rb

Z kmax

0
FG1,G2 !y, k"

3 $1 2 exp!2kt"% dy dk . (2)

Here k is the relaxation rate of an individual mode, and the
distribution function FG1,G2 !y, k" is introduced as follows:
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The distribution function is normalized so that
R

FG1,G2 !y, k" dydk ! r!!G2" 2 r!!G1", where r!!G" is
the equilibrium number density of the excited modes at
given G. One can see from Eq. (1) that r ! rb!1 2
'y(r!", i.e., since 'y( is expected to be of the order of a
single particle volume, r! is of the order of the flip-flop
correction to the total density. The observed amplitude of
the density changes in our experiments imply that r! is
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We present a combined experimental and theoretical study of memory effects in vibration-induced
compaction of granular materials. In particular, the response of the system to an abrupt change in
shaking intensity is measured. At short times after the perturbation a granular analog of aging in glasses
is observed. Using a simple two-state model, we are able to explain this short-time response. We also
discuss the possibility for the system to obey an approximate pseudo-fluctuation-dissipation theorem
relationship and relate our work to earlier experimental and theoretical studies of the problem.

PACS numbers: 45.70.Mg, 61.43.Fs, 81.05.Rm

Granular materials comprise an important class of com-
plex systems whose simple fundamental mechanics gives
rise to rich macroscopic phenomenology [1]. Recent ex-
periments on granular compaction [2,3]suggest they are an
ideal system for studying jamming, a phenomenon lying
outside the domain of conventional statistical physics, yet
highly reminiscent of glassiness. These studies showed
that a loose packing of glass beads subjected to vertical
“tapping” slowly compacts, asymptoting to a higher steady
state packing fraction. This “equilibrium” packing fraction
is somewhat lower than the random close packing limit,
rrcp ! 0.64, and is a decreasing function of the vibration
intensity, typically parametrized by G, the peak applied ac-
celeration normalized by gravity, g. The relaxation dynam-
ics are extremely slow, taking many thousands of taps for
the packing fraction, r, to approach its steady state value.
During this evolution, r increases logarithmically with
the number of taps, t, which is typical for self-inhibiting
processes [4]. The average time scale t of the relaxation
decreases with G, and in this sense the shaking intensity
plays, at least qualitatively, the role of temperature. For
small G, the relaxation rate becomes so slow that the sys-
tem cannot reach the steady state density within the experi-
mental time scale. It was also found that compaction can
be maximized through an annealing procedure. This pro-
cess involves a slow “cooling” of the system starting from
a high shaking intensity G. Another qualitative similarity
to glasses is observable in the density fluctuation spectrum
of the granular system near its steady-state density. The
spectrum was found to be strongly non-Lorentzian [3], re-
vealing the existence of multiple time scales in the system.
The shortest and the longest relaxation time scales differ by
as much as 3 orders of magnitude, and the behavior of the
spectrum for the intermediate frequencies is highly non-
trivial; in certain regimes it can be fitted with a power law.

These previous experimental observations are suggestive
of glassy behavior and this connection has been explored
in recent models of compaction using ideas from magnetic
systems [5]. However, a more direct test of the glassy
nature of granular compaction comes from measurements
of the response of the system to sudden perturbations of
the effective temperature, given by G. This idea originates

from classical experiments for the study of aging in glasses
[6], and has recently been explored using computer simu-
lations [7]. In this Letter, we present direct experimental
observations of memory effects in a vibrated granular sys-
tem obtained by measuring the short-time response to an
instantaneous change in tapping acceleration G and pro-
pose a simple theoretical framework.

We used the experimental setup described in Refs. [2,3]:
1 mm-diameter glass beads were vertically shaken in a
tall, evacuated, 19 mm-diameter glass tube, and the pack-
ing density of the beads was measured using capacitors
mounted at four heights along the column.

The simplest form of this experiment consists of a single
instantaneous change of vibration intensity from G1 to G2
after t0 taps. For G2 , G1 (Fig. 1a) we found that on short
time scales the compaction rate increases. This is in sharp
contrast to what one may expect from the long-time behav-
ior found in previous experiments where the relaxation is
slower for smaller vibration accelerations. For G2 . G1
(Fig. 1b) we found that the system dilates immediately
following t0. These results, too, are opposite from the
long-time behavior seen in previous experiments where the
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FIG. 1. Evolution of the packing fraction, r, at four heights
in the column, as a function of tap number, t. Two different
single-switch experiments: (a) G was lowered from 5.6 to 1.8
at t0 ! 25; and (b) G was increased from 3.5 to 6.3 at t0 ! 30.
Curves are shifted vertically for clarity. Each curve is an average
over 4 runs, and the measurement uncertainty in r is 4 3 1024.
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FIG. 1. Evolution of the packing fraction, r, at four heights
in the column, as a function of tap number, t. Two different
single-switch experiments: (a) G was lowered from 5.6 to 1.8
at t0 ! 25; and (b) G was increased from 3.5 to 6.3 at t0 ! 30.
Curves are shifted vertically for clarity. Each curve is an average
over 4 runs, and the measurement uncertainty in r is 4 3 1024.

3632 0031-9007"00"85(17)"3632(4)$15.00 © 2000 The American Physical Society

VOLUME 85, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 23 OCTOBER 2000

Memory Effects in Granular Materials

Christophe Josserand,* Alexei V. Tkachenko,† Daniel M. Mueth, and Heinrich M. Jaeger
The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

(Received 25 February 2000)

We present a combined experimental and theoretical study of memory effects in vibration-induced
compaction of granular materials. In particular, the response of the system to an abrupt change in
shaking intensity is measured. At short times after the perturbation a granular analog of aging in glasses
is observed. Using a simple two-state model, we are able to explain this short-time response. We also
discuss the possibility for the system to obey an approximate pseudo-fluctuation-dissipation theorem
relationship and relate our work to earlier experimental and theoretical studies of the problem.

PACS numbers: 45.70.Mg, 61.43.Fs, 81.05.Rm

Granular materials comprise an important class of com-
plex systems whose simple fundamental mechanics gives
rise to rich macroscopic phenomenology [1]. Recent ex-
periments on granular compaction [2,3]suggest they are an
ideal system for studying jamming, a phenomenon lying
outside the domain of conventional statistical physics, yet
highly reminiscent of glassiness. These studies showed
that a loose packing of glass beads subjected to vertical
“tapping” slowly compacts, asymptoting to a higher steady
state packing fraction. This “equilibrium” packing fraction
is somewhat lower than the random close packing limit,
rrcp ! 0.64, and is a decreasing function of the vibration
intensity, typically parametrized by G, the peak applied ac-
celeration normalized by gravity, g. The relaxation dynam-
ics are extremely slow, taking many thousands of taps for
the packing fraction, r, to approach its steady state value.
During this evolution, r increases logarithmically with
the number of taps, t, which is typical for self-inhibiting
processes [4]. The average time scale t of the relaxation
decreases with G, and in this sense the shaking intensity
plays, at least qualitatively, the role of temperature. For
small G, the relaxation rate becomes so slow that the sys-
tem cannot reach the steady state density within the experi-
mental time scale. It was also found that compaction can
be maximized through an annealing procedure. This pro-
cess involves a slow “cooling” of the system starting from
a high shaking intensity G. Another qualitative similarity
to glasses is observable in the density fluctuation spectrum
of the granular system near its steady-state density. The
spectrum was found to be strongly non-Lorentzian [3], re-
vealing the existence of multiple time scales in the system.
The shortest and the longest relaxation time scales differ by
as much as 3 orders of magnitude, and the behavior of the
spectrum for the intermediate frequencies is highly non-
trivial; in certain regimes it can be fitted with a power law.

These previous experimental observations are suggestive
of glassy behavior and this connection has been explored
in recent models of compaction using ideas from magnetic
systems [5]. However, a more direct test of the glassy
nature of granular compaction comes from measurements
of the response of the system to sudden perturbations of
the effective temperature, given by G. This idea originates

from classical experiments for the study of aging in glasses
[6], and has recently been explored using computer simu-
lations [7]. In this Letter, we present direct experimental
observations of memory effects in a vibrated granular sys-
tem obtained by measuring the short-time response to an
instantaneous change in tapping acceleration G and pro-
pose a simple theoretical framework.

We used the experimental setup described in Refs. [2,3]:
1 mm-diameter glass beads were vertically shaken in a
tall, evacuated, 19 mm-diameter glass tube, and the pack-
ing density of the beads was measured using capacitors
mounted at four heights along the column.

The simplest form of this experiment consists of a single
instantaneous change of vibration intensity from G1 to G2
after t0 taps. For G2 , G1 (Fig. 1a) we found that on short
time scales the compaction rate increases. This is in sharp
contrast to what one may expect from the long-time behav-
ior found in previous experiments where the relaxation is
slower for smaller vibration accelerations. For G2 . G1
(Fig. 1b) we found that the system dilates immediately
following t0. These results, too, are opposite from the
long-time behavior seen in previous experiments where the

= 5.6

0

= 1.8 = 3.5 = 6.3

a) b)

10 20 30 40
t

0.59

0.60

0.61

0.62

0.63

Γ Γ

ρ

Γ Γ

0 10 20 30 40 50 60
t

FIG. 1. Evolution of the packing fraction, r, at four heights
in the column, as a function of tap number, t. Two different
single-switch experiments: (a) G was lowered from 5.6 to 1.8
at t0 ! 25; and (b) G was increased from 3.5 to 6.3 at t0 ! 30.
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Memory of treatment in hidden order



Kovac’s effect (polymer glasses, crumpled paper…) 
Remembers waiting time 

Kaiser effect 
Remembers largest strain  

Shape-memory alloys 

Designing in function:  memory

More examples of memories in matter



Some general questions 
The basic operations of memory: imprinting, reading and erasure of information  

What constitutes a memory? 
How is one memory different in kind from another? 
Can memories be placed into different categories? 
How many kinds of memories are there? 
What does a system need to possess in order to be able to store memories? 

 (many degrees of freedom, far from equilibriumum,…) 
How many memories can be stored in a system? 
What is the entropy of having a memory? 
What is plasticity? 
How many ways can one erase memories? 
Are all types of memory useful (e.g., in biology)? 



Some distinctions

Minima in a landscape 
Marginal states 

Heredity: DNA versus immune system or biome 

Erasable or non-erasable  
RAM or DRAM 
Volatile vs. non-volatile 
First-in / first-out vs. first-in / last-out 



Biology 

Associative memory 
Short-term memory 
Long-term memory 

Where I parked the car? 
Muscle memory 


