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Motivation

Frictional Dynamics play an important
role in seismic faulting



http://listcrown.com/top-10-dangerous-natural-disasters/

* The forces supported by the particles are not

homogeneous in space but are concentrated

into “stress chains’ that are quite important in

sustaining frictional forces
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Technique pioneered and highly developed by R. Bheringer



VOLUME 67, NUMBER 13 PHYSICAL REVIEW LETTERS 23 SEPTEMBER 1991

Granular Flow: Friction and the Dilatancy Transition

Peter A. Thompson and Gary S. Grest

The fundamental difficulties impeding our understand-
ing lay with the very properties of granular media that
make it so interesting to study in the first place: dilatan-
cy, bistability, arching, segregation, and thixotropy.

These properties conspire to create substantial hysteresis
and instability, limiting experimental control and repro-
ducibility [3,6-9]. Analytical treatments are also difficult
because the boundary conditions and velocity distribution
functions are poorly understood, and microstructure in-
duces complex correlations among grains [4,6,7].




The experiment
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See also later lecture by S. Sastry
cycle the system compactifies and the dissipatio

he areas reduce slowly, mayb




Questions
e asymptotic area zero or fin
it indeed a power law, what powe
e |sthe power law universal?

Answers

An=Ax+Bn?, 6=~1.

ymptotic area: finite due to frictional ¢

verse power law up to log correcti
* The power law universal




Simulations

5] L. E. Silbert, D. Erta, G. S. Grest, T. C. Halsey, D. Levine
and S. J. Plimpton, Phys. Rev. E. 64, 051302 (2001).

Hertzian normal forces, Mindlin tangential forces, coulomb law imposed
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J point must be zero
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The solution of this equation for n large is
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FIG. 8. Upper panel: examples of low order hysteresis loops
in the P — @ plane. The compression legs are blue and the
decompression legs red. Lower panel: examples of higher or-
der hysteresis loops in the P — ¢ plane with the same color
convention. The high order loops are no longer able to com-
pactify the system further, and the compression leg begins at
the same volume fraction where the decompression leg ends.
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FIG. 4: The power law for the decaying areas under the hys-
teresis loops as measured in the numerical simulation. Here
p = 0.3, Black dots are data and the red line is the best fitting

FIG. 5: Log-log plot of X,, vs. n. Here p = 0.3, the black
power law y = 0.075X ~ 1095,

dots are the data, the blue line is the best fitting scaling law
y = 0.003z 9%,




——y = 0028995 * x*(-0.96023) R=0.58211

AreaDifference

A | v

ey = 0. 27996 * x*(-0.97312) R=096334




clusions and roa

ave a tiny but apparently robust
for training and memory in frictiona
nular media.

ext we focus on an interesting giant slip
vent.

IS requires a detailed understanding of
f of normal and tangential forces.

tuned. Do not go anywhere.
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