The geometry and mechanics of morphogensis in leaves

Arezki Boudaoud; LPS, ENS Paris

Leyser & Day, Mechanisms in Plant Development

 $3D \longrightarrow 1D \longrightarrow 2D$

How to build tapered or flat organs?

Outline

Ruffles in leaves

B. Audoly, A.B.

Leaf vasculature

F. Corson, M. Adda-Bedia, A.B.

Walled cells:
plants, fungi, bacteria
mechanically `simple'

A.B.

Yeast growth mechanics

N. Minc, F. Chang, A.B.

Ruffles in leaves, petals, and more

Ruffles in leaves

Ruffles in leaves

Eran Sharon

Ruffles in torn plastic sheets

Eran Sharon et al 2002

Ruffles in torn plastic sheets

Ruffles

Metric

$$ds^2 = (1+g(y))^2 dx^2 + dy^2$$

g(y): growth strair

Ruffles

Up to 5 generations with wavelenghts λ , $\lambda/3$, $\lambda/9$, $\lambda/27$, $\lambda/81$.

conserved: midvein, secondary veins

variable: higher order ...; areoles

Runions et al. 2005

Sachs, Mitchison... 1980 Rolland-Lagan & Prusinkiewicz 2005 Feugier et al. 2005-2006

Dimitrov & Zucker 2006

Runions et al. 2005

Sachs, Mitchison... 1980 Rolland-Lagan & Prusinkiewicz 2005 Feugier et al. 2005-2006

Dimitrov & Zucker 2006

Couder et al 2002 Laguna et al 2008

Main motivations

• Tissue with two cell types — a minimal system for 2D morphogensis

Goal:

- understand reorganisation of network as leaf grows
- compare with observations and suggest future experiments

Model:

- cell based
- elastic walls slowly yielding to tension
- growth driven by
- cell division
- two cell types with different mechanical properties
- division of areoles

viscoelastic walls
$$T_i = \mu h \left(\frac{l_i}{l_i^0} - 1 \right) = \frac{\nu_i h}{l_i^0} \frac{\mathrm{d} l_i^0}{\mathrm{d} t}$$

quasi-static, energy minimisation

$$\mathcal{E} = \sum \frac{\mu h}{2} \left(\frac{l_i}{l_i^0} - 1 \right)^2 - \sum PS_i$$

update l_i^0

cell division: when S=1 according to smallest axis of inertia

periodic boundary conditions

areole division: from sides to centroid minima of distance to centroid 2 or 3 new veins according to areole shape

Scarpella, Francis & Berleth 2004

Scarpella, Francis & Berleth 2004

force balance at junctions

properties of junctions

leaf data by Bohn, Andreotti, Douady, Muzinger & Couder 2002

reorganisation in young leaves

Sawchuck et al. 2007

Conclusion

- A 'simple' growth program leads to complex forms
- venation networks growth and reorganisation
 seems to be driven by mechanical forces assuming differences in stiffness
- experimental tests: A. Peaucelle ; N. Nakayama ; E. Sharon
- Future: integrate genetic & hormonal regulation

Ruffles

Basile Audoly
Paris 6 University

Venation

Mokhtar Adda-Bedia ENS Francis Corson ENS, now Rockefeller University

Experimental collaborations

Eran Sharon HUJI Yohai Bar Sinai HUJI, now ENS Naomi Nakayama Bern University Alexis Peaucelle INRA Versailles

Main entrance ENS Lyon

Old city of Lyon

Department of Biology, Ecole Normale Supérieure, Lyon Come & join the adventure

