The geometry and mechanics of morphogensis in leaves

Arezki Boudaoud; LPS, ENS Paris

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

$3 D \longrightarrow 1 D \longrightarrow 2 D$

+leaves

How to build tapered or flat organs?

Outline

Ruffles in leaves

B. Audoly, A.B.

Leaf vasculature
F. Corson, M. Adda-Bedia, A.B.

Yeast growth mechanics

N. Minc, F. Chang, A.B.

Ruffes in leaves, petals, and more

Ruffes in leaves

Ruffes in leaves

Ruffes in torn plastic sheets

Eran Sharon et al 2002

Ruffles in torn plastic sheets

Ruffles

Ruffles

Up to 5 generations with wavelenghts $\lambda, \lambda / 3, \lambda / 9$, $\lambda / 27, \lambda / 81$.

Venation networks

conserved: midvein, secondary veins variable: higher order ... ; areoles

Venation networks

Sachs, Mitchison... 1980
 Rolland-Lagan \& Prusinkiewicz 2005
 Feugier et al. 2005-2006

Dimitrov \& Zucker 2006

Venation networks

Sachs, Mitchison... 1980
Rolland-Lagan \& Prusinkiewicz 2005
Feugier et al. 2005-2006

Dimitrov \& Zucker 2006

Couder et al 2002
Laguna et al 2008

Venation networks

Main motivations

- Tissue with two cell types - a minimal system for 2D morphogensis Goal:
- understand reorganisation of network as leaf grows
- compare with observations and suggest future experiments Model:
- cell based
- elastic walls slowly yielding to tension
- growth driven by
- cell division
- two cell types with different mechanical properties
- division of areoles

Venation networks

viscoelastic walls $T_{i}=\mu h\left(\frac{l_{i}}{l_{i}^{0}}-1\right)=\frac{\nu_{i} h}{l_{i}^{0}} \frac{\mathrm{~d} l_{i}^{0}}{\mathrm{~d} t}$

quasi-static, energy minimisation

$$
\mathcal{E}=\sum \frac{\mu h}{2}\left(\frac{l_{i}}{l_{i}^{0}}-1\right)^{2}-\sum P S_{i}
$$

update l_{i}^{0}
cell division: when $S=1$ according to smallest axis of inertia

periodic boundary conditions

Venation networks

areole division: from sides to centroid minima of distance to centroid 2 or 3 new veins according to areole shape

Venation networks

Venation networks

Venation networks

Scarpella, Francis \& Berleth 2004

Venation networks

force balance at junctions

Venation networks

properties of junctions

leaf data by Bohn, Andreotti, Douady, Muzinger \& Couder 2002

Venation networks

reorganisation in young leaves

Venation networks

Conclusion

- A 'simple' growth program leads to complex forms
- venation networks growth and reorganisation seems to be driven by mechanical forces - assuming differences in stiffness
- experimental tests: A. Peaucelle ; N. Nakayama ; E. Sharon
- Future: integrate genetic \& hormonal regulation

Ruffles

Basile Audoly Paris 6 University

Venation
Mokhtar Adda-Bedia ENS

Francis Corson
ENS, now Rockefeller University

Experimental collaborations

Eran Sharon HUJ

Yohai Bar Sinai
HUJI, now ENS

Naomi Nakayama
Bern University
Alexis Peaucelle INRA Versailles

Main entrance ENS Lyon

Old city of Lyon

Department of Biology, Ecole Normale Supérieure, Lyon
Come $\&$ join the adventure

