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25 years DINFK

•Complex
•Deforming
•Multiscale

GEOMETRIES

PHYSICS
•Heterogeneous
•Unsteady
•Multiscale
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25 years DINFK

What methods do we need ? 

• LAGRANGIAN
• HETEROGENEOUS
• SCALABLE

Adaptivity
Multiscaling (multi-resolution/physics)

Large Deformations
Heterogeneity 
Efficient
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Crown Breakup - maragoni instability 

drop impact onto an ethanol sheet

[2] S. T. THORODDSEN, T. G. ETOH, AND K. TAKEHARA. CROWN BREAKUP BY 
MARANGONI INSTABILITY. J. FLUID MECH., 557(-1):63–72, 2006.

Vasculogenesis
blood vessel formation in embryonic 
development

R. M. H. MERKS, S. V. BRODSKY, M. S. GOLIGORKSY, 
S. A.NEWMAN, AND J. A. GLAZIER. CELL 
ELONGATION IS KEY TO IN SILICO REPLICATION OF 
IN VITRO VASCULOGENESIS AND SUBSEQUENT 
REMODELING. DEVELOPMENTAL BIOLOGY, 289(1):
44–54, 2006.
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25 years DINFKCSE  Lab

Runs at IBM Watson Center - BLue Gene/L 

The Flow and Growth of  Aircraft Wakes16384 Cores  - 10 Billion  Particles - 60% efficiency

Chatelain P., Curioni A., Bergdorf M., Rossinelli D., Andreoni W., Koumoutsakos P., Billion Vortex Particle Direct Numerical Simulations of Aircraft Wakes, Computer Methods in Applied Mech. and Eng. 197/13-16, 1296-1304, 2008 
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25 years DINFKCSE  Lab

The Flow and Growth of Cancer 

Milde F.,  Bergdorf M.,  Koumoutsakos P., A hybrid model of sprouting angiogenesis, Biophysical J.. 2008 

512 Cores  - 10 Million  Particles 
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http://www.icos.ethz.ch/cse

Particle Simulation of Elastic Solid

• Pistons move with 
constant velocity

• Elastic solid fixed to the 
pistons

• Highly dynamic 
deformation of large 
extent

Plane Strain Compression Test
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Particle Simulation of Elastic Solid

• Pistons move with 
constant velocity

• Elastic solid fixed to the 
pistons

• Highly dynamic 
deformation of large 
extent

Plane Strain Compression Test
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http://www.icos.ethz.ch/cse

Plane Strain Compression Test
FEM solution    (ABAQUS 

6.4/Explicit)
Redistributed             

Particle solution

Linear Elasticity

Nonlinear Elasticity

Young’s Modulus =100   
Poisson ratio=0.49 ~2000 

particles/nodes 

Hyperelastic Material

C10=2.2, D=0.001

~2000 particles/nodes

S.E. Hieber and P. Koumoutsakos A Lagrangian particle method for the simulation of linear and nonlinear elastic models of soft tissue. al., 
J. Comp. Physics, 2008
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25 years DINFK

Why Adaptive Methods ?

Koumoutsakos & Leonard, JFM,1995
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25 years DINFK

Anatomy of a Simulation &   3  Gaps  in   Computing

MATH
Algorithms
Numerics

CS
Software
Hardware

SIMULATIONS
Validations
Predictions

COMPUTATIONAL 
SCIENCE

Integration - Validation

Compare to 
Experiments

Code 
PerformanceNO YES

POOR

GOOD

Computational
Validated Tool
for Scientific 

Discovery

Solving 
right
 equation ?

Solving 
equation 
right ?

Enough 
science 
per “$” ?

Adapted from  : US-DOE

X- SCIENCE
Model  Development

(theory, data)

data
analysis
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Particles : “Smooth”  -  Discrete  

Smooth =  APPROXIMATE
 
 •Smoothed Particle Hydrodynamics
 •Vortex Methods
 •Lagrangian level sets 

Discrete = MODEL

 • Molecular Dynamics (MD)
 • Dissipative Particle Dynamics 
 • Stochastic Simulation 
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  DISCRETE:
  Particles as carriers of  physical properties - Models       
  RHS of ODEs : Physical models - Particle interactions

Particle Methods:  an N-BODY  problem 

Particle (position, value) 

   SMOOTH
   Particles are quadrature points for continuum properties 
   RHS of ODEs:  quadratures of integral equations 

• Multipole  Algorithms, Fast Poisson solvers ,   Adaptivity, multiresolution, multiphysics+

i, j = 1, · · · , N dqi

dt
= F (qj , qi, xi, xj , · · · )

dxi

dt
= U(qj , qi, xi, xj , · · · )
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PARTICLES  

Smooth =  APPROXIMATE
 
 •Smoothed Particle Hydrodynamics
 •Vortex Methods
 •Lagrangian level sets 

Discrete = MODEL

 • Molecular Dynamics (MD)
 • Dissipative Particle Dynamics (DPD) 
 • Stochastic Simulation 

& Discrete Smooth
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Smooth/Discrete Particles

J. H. Walther, P. Koumoutsakos, Three-dimensional vortex methods for particle-laden flows with two-way coupling, J. Comput. Phys., 167, 39-71, 2001 
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A BRIEF  HISTORY of PARTICLE METHODS
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The 1920’s 

Rosenhead - Hand Calculations of a Vortex Sheet

17Tuesday, September 8, 2009



The 50’s 

Feynman - Vortex Filaments: How do they break and reconnect ?
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The 60’s : Marker And Cell (MAC) - (velocity - pressure)

Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface,, Harlow, Francis H. and Welch, J. Eddie, Physics of Fluids, 1965

F.H. Harlow and E.J. Welch
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vortex Particle Methods : From the 60’s to the 80’s 

A. Chorin ~ 1970

A. Leonard ~ 1980

C. Peskin ~ 1980
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vortex Particle Methods : From the 60’s to the 80’s 

What stopped  Vortex Methods ?  
3D - Boundaries 
Cost
No theory of convergence
............
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Particles strike back  : SPH (Monaghan, Lucy, 1970’s)

GRID FREE + LAGRANGIAN/ADAPTIVE  + NO POISSON EQUATION

Growth of Black Holes
Springel, MPI - 
Hernquist, Harvard

Lucy, 1974 : A numerical scheme for the testing of the fission hypothesis, Astron. J.
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FLUIDS and PARTICLES : CFD and GRAPHICS

Star Trek
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How does it work ?

     properties:
Qp(t) = q(xp, t)

Function approximation qh
ε (x, t) =

Np∑

p=1

hd
p Qp(t) ζε(x− xp(t))

ε

ζε =
1
εd

ζ(
x

ε
)

h

!

 locations           xp volumes
p = 1, · · · , NParticles

vp = hd
pvolumes
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Interface Tracking 
versus CapturingCapturing

Implicit description

Eulerian framework

Marker particles

Tracking

• Explicit description
• Lagrangian framework
• Interface distortion requires reseeding

 Level set function
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PARTICLE  METHODS :  Geometry

Volume  particles

 •Particles are quadrature points

 • Easy to discretize  COMPLEX GEOMETRIES

Surface  particles

 • Particle - Level Sets - COMPLEX SURFACES

 • Surface Operators - Anisotropic Volume OperatorsΦ = −1
Φ = +1

Φ = 0
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PARTICLES + LAGRANGIAN ADAPTIVITY

Lagrangian form:

no linear stability constraints
= no CFL (dt<dx/u) condition

→

dxp

dt
= u(xp, t) ,

dvp

dt
= vp (∇ · u) (xp, t) ,

dQp

dt
= vp Lε,h(q,xp, t) .

positions

volumes

weights

vp = hd

Qp = q(xp, 0) vp

on lattice
initial values

PARTICLES

∂q

∂t
+ ∇ · (uq) = L(q, x; t)

Dq

Dt
= L(q, x; t)
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CONTINUUM : Lagrangian  Form of   Governing  Equations

 

Position

Volume

Velocity

Level set

Stress tensor evaluation depends on 
the constitutive model

Dvp

Dt
= vp(∇ · u)p

ρp
Dup

Dt
= (∇ · σ)p

Positions

Volumes

Properties

Mass Conservation

Momentum Conservation

Interfaces
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 Particle  Level sets : 3D curvature-driven flow: 
Collapsing Dumbbell

κ = ∇ · n

∂φ

∂t
+ κ n ·∇φ = 0.

∂Φ
∂t

+ u ⋅∇Φ = 0

dxp

dt
= u

Particle   Approximation

DΦp

Dt
= 0

Φh
ε (x, t) =

Np∑

p=1

hd
p Φp(t) ζε(x− xp(t))

A Lagrangian Particle Level Set Method, Hieber and Koumoutsakos, J. Comp. 
Phys. 2005

Γ(t) = {x ∈ Ω | φ(x, t) = 0}

|∇φ| = 1
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Benchmark: Rigid Body Motion
Problem of rotating slotted disk/sphere

Particle level sets exact for rigid body motion

Particle  Level Sets (exact !)Eulerian Level Sets (Fedkiw, 
2002)

Particle level set method 

(800 particles)

30Tuesday, September 8, 2009



Are grid-free  Particle Methods Accurate ?
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NOTES :  
• Must have  h/ε < 1 for the quadrature to be accurate  i.e.  PARTICLES MUST OVERLAP.
•References : J. Raviart (1970’s), O. Hald (1980’s), T. Hou (1990’s), G.H. Cottet (1990’s)

||Φ − Φh
ε || ≤ ||Φ − Φε|| + ||Φε − Φh

ε ||

≤ (C1 εr + C2 (
h

ε
)m) ||Φ||∞

Particle Approximation  = 

Smooth  Particles must Overlap

Φε(x) =
∫

Φ(y) ζε(x− y) dy

Mollification

Φh
ε (x, t) =

Np∑

p=1

hd
p Φp(t) ζε(x− xp(t))

Quadrature
+
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Lagrangian distortion and REMESHING

Particles follow flow trajectories
•distortion of particle locations
•loss of overlap
•loss of convergence

Preventive action: remeshing
Reinitialize particles on  a regular grid.

Qnew
i =

∑

p

Qp ζh(ih− xp)

Limiting:  Introduction of a grid  

Enabling:  
• Fast Poisson solvers
•Access versatility of finite differences
• Enabling efficient multiresolution adaptivity
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Remeshing = Regularization = Resampling

A new regularized particle set from the old one

Qnew
p =

∑

p′

Qp′M(j h− xp′)

M(x)Interpolation Kernel
• Moment conserving
• Tensorial Product of 1D kernels
   

REFERENCES : 
Vortex Methods : PK and Leonard , JFM, 1995, and PK, JCP, 1997
SPH :  Chaniotis, Poulikakos and PK, JCP, 2002
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Hybrid  Particle  Mesh  
Techniques 

step 1 :  ADVECT :  Particles 

step 2 :  REMESH :  Particles  to  Mesh  nodes

step 3 : SOLVE  :  field equations / Derivatives  on 
Mesh 

step 4 :  RESAMPLE : Mesh Nodes  BECOME  Particles 
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Koumoutsakos and Leonard, JFM,1994

yet  InefficientParticle Methods are adaptive

36Tuesday, September 8, 2009



Particles and Multiple Scales/Physics

Wavelet - Particle Method
Keypoints: Wavelets guide particle refinement. 
              Lagrangian convection of small scales

Multi-Particle Methods
Keypoints: Coupling Discrete and Smooth Particle Methods 
              Interface of different physics and numerics
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Wavelet-particle method
While particles are on grid locations

mollification kernel             basis/scaling function

Multiresolution analysis (MRA)              of particle quantities{V l}L
l=0

+

ζl+1
k =

∑

j

h̃l
j,k ζl

j +
∑

j

g̃l
j,k ψl

j

Refineable kernels
as basis functions of 

=

ζl
k =

∑

j

hl
j,k ζl+1

jV l

Wavelets as basis functions of the 
complements W l

=

M. Bergdorf, P. Koumoutsakos. A Lagrangian Particle-Wavelet Method. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 5(3), 980-995, 2006
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Multiresolution function representation:

l

qL =
∑

k

c0
k ζ0

k +
∑

l<L

∑

k

dl
k ψl

k

GROUND LEVEL

DETAIL 
COEFFICIENTS

WAVELETS

Analysis (collocation): ~ | fine - Prediction(coarse) |dl
k

(2D)

Each wavelet is associated 
with a specific
grid point/particle

Compression/Adaptation:
Discard insignificant detail coefficients:

Compressed function representation:→ Adapted grid

|dl,m
k | < ε

‖qL − qL
≥‖ < ε
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Remeshing + MultiResolution Analysis

qL =
∑

k

c0
k ζ0

k +
∑

l<L

∑

k

dl
k ψl

k

“ground” level detail 
coefficients wavelets

1.Remesh 
2.Wavelets- Compress/Adapt
3.Convect
4.Wavelets Reconstruct
5.GOTO 1
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2D Euler equations

∂ω

∂t
+∇ · (u ω) = 0

u = ∇×Ψ

∆Ψ = ω

CFLmax ≈ 10
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Wavelet - Particle Level sets
Γ(t) = {x ∈ Ω | φ(x, t) = 0}
|∇φ| = 1

Solve with particles:

Hieber and Koumoutsakos, J. Comp. Phys. 2005
Bergdorf and Koumoutsakos, SIAM Multisc. Mod. Simul., 2007

dxp

dt
= up

dΦp

dt
= 0

u = n∇ · n

∂Φ
∂t

+ u ·∇Φ =0

Φh
ε =

Np∑

p=1

hd
p Φp(t) ζε(x− xp(t))

CFL = 40
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25 years DINFK

Results: Crystal Growth

Simulation of Dendritic growth
Interface is driven by the jump of the temperature flux across it.

crystallization core

super-cooled liquid∂T

∂t
= ∇ · (k∇T )

T |Γ = TΓ

∂φ

∂t
+ u ·∇φ = 0

u|Γ = −n[k∇T · n]Γ
Γ = {x | φ(x = 0) }
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Wavelet  Particle  Level sets - 3D 

Key Issues : Data Structures & Software Engineering

45Tuesday, September 8, 2009



25 years DINFK

 Stochastic Simulation  Algorithms

Ribosomal Biogenesis - J. Stelling - ETHZ
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25 years DINFK

Stochastic  Simulation  Algorithm

• One timestep:

• Sample τ 

• Sample the index j

• Update the Xi, t=t+τ 

p(j = l) =
al

a0

a0 =
M∑

j=1

ajτ ∼ E(1/a0)

Gillespie,J. Comp. Phys. 1977

exact BUT slow

• For M reactions, time until any reaction

• Reaction index :  point-wise distribution

• The SSA simulates every reaction event !
47Tuesday, September 8, 2009

http://www.icos.ethz.ch/cse
http://www.icos.ethz.ch/cse


25 years DINFK

SSA : acceleration in time
• τ-leaping  : several reaction events over one time step, 

• Assumption : reaction propensities ai remain essentially 
constant over τ, in spite of several firings

• Over this given τ, the number of reaction firings KPj is 
governed by a Poisson distribution

KP
j ∼ P(ajτ)

Gillespie,J. Chem. Phys. 2001

Cost ~  M Poisson samplings

X(t + τ) = X(t) +
M∑

j=1

KP
j νj .

48Tuesday, September 8, 2009
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25 years DINFK

 τ leaping : Fast BUT Inexact  

• τ leaping : Can generate  negative populations 

• Binomial τ leaping : Approximate the unbounded Poisson 
distributions with Binomial ones

• Modified τ leaping
• Critical reactions, i.e. those likely to drive some populations negative, handled by SSA

• Other reactions advanced by τ leaping

Tian & Burrage,
J. Chem. Phys. 2004

Chatterjee et al.,
J. Chem. Phys. 2005

Cao et al.,
J. Chem. Phys. 2005
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25 years DINFK

R-leaping : Accelerate SSA by reaction leaps 

• Leaps :  prescribe number of firings L across all channels 

P (j = l) =
al(x)
a0(x)

for l = 1, . . . ,M.

• In R-leaping, (as in SSA), the index j of every firing obeys a point-wise distribution 

• In this interval we will have           firings of channel   Km Rm

• with : 
M∑

m=1

Km = L

• Time increment τL is Gamma-distributed τL ∼ Γ(L, 1/a0(x))

Auger, Chatelain, Koumoutsakos, R-leaping: Accelerating the stochastic simulation algorithm by reaction leaps.
J. Chem. Phys. , 125, 84103, 2006
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25 years DINFK

R-leaping : One step  Auger, Chatelain, Koumoutsakos
J. Chem. Phys. 125, 84103, 2006

• Define L 

• Sample the index j 

• Number of reactions for channel  m  

• Update species and time : 

P (j = l) =
al(x)
a0(x)

for l = 1, . . . , L.

Km =
L∑

l=1

δl,m

X(t + τL) = X(t) +
M∑

j=1

Kjνj

τL ∼ Γ(L, 1/a0(x))
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25 years DINFK

R-leaping : Accelerate SSA by reaction leaps 

• L firings distributed  across M reaction channels
• In τ leaping:  KPj are independent Poisson variables. 

• In R-leaping, Kj are not independent.

• L as a control parameter
• System can be brought to a desired state X

• Time is not a-priori specified 

• New approaches to controlling  negative species

52Tuesday, September 8, 2009
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25 years DINFK

 R-leaping : How to  Sample the  the M   Kj

• Pointwise Sampling of  L independent 
reaction indices 

• Simple  BUT  scales with L - close to the work load of SSA!

1 2 3 ... M
1
2
3
...
L
K

x
x

x
x

x
2 2 1

Fi
rin

g

Reaction index

p(j = l) =
al

a0

The R0-sampling scales with L and, in particular when compared with τ -leaping that scales with M, the method is inefficient for large leap sizes, L ≫ M.

R0 Algorithm
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25 years DINFK

R-Leaping Theorem 

 The distribution of          is a binomial distribution : 

and for every                                   the conditional distribution of 

given  the event                                                                                is

This  result is invariant under any permutation of the indices

K1

B(L, a1(x)/a0(x))

m ∈ {2, . . . ,M} Km

{(K1, . . . ,Km−1) = (k1, . . . , km−1)}

B
(

L−
m−1∑

i=1

ki,
am(x)

a0(x)−
∑m−1

i=1 ai(x)

)
.Km ∼
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25 years DINFK

 R-leaping : How to  Sample the  the M   Kj

• Pointwise Sampling of  L independent 
reaction indices 

• Simple  BUT  scales with L - close to the work load of SSA!

1 2 3 ... M
1
2
3
...
L
K

x
x

x
x

x
2 2 1

Fi
rin

g

Reaction index

1 2 3 ... M
1
2
3
...
L
K

x
x

x
x

x
2 2 1

Fi
rin

g

Reaction index

p(j = l) =
al

a0

The R0-sampling scales with L and, in particular when compared with τ -leaping that scales with M, the method is inefficient for large leap sizes, L ≫ M.

R0 Algorithm

B(L, aj/a0)

Km ∼ B
(

L−
m−1∑

i=1

ki,
am

a0 −
∑m−1

i=1 ai

)
If Ki = ki, ∀i < m,

• Sampling M correlated binomial variables

• Create correlations with conditional distributions 

R1 Algorithm
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25 years DINFK

 R-leaping : Efficient  Sampling / Sorting

• Sampling the M Kj efficiently (SORT the reactions)

• M can be large (~102) for bio-chemical systems!

• Efficient sampling effectively loops over a fraction of M.

• The larger the system, the bigger the payoff.

• The more disparate the  reaction rates are, 
the smaller the fraction.

• Price to pay: carry out re-ordering often enough
(cheap!)

Number of binomial samples per time step
LacYLacZ activities in E. Coli., M=22

Original

Efficient

Efficient 
(averaged)
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25 years DINFK

• Controlling the leap approximation

• All three methods of τ leaping are transposable to R-
leaping

• Absolute change of aj

• Relative change of aj

• Relative change of aj but efficiently through the 
relative changes in populations

Stochastic simulation: R-leaping
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25 years DINFK

• LacZ/LacY genes expression and enzymatic/
transport activities of LacZ/LacY proteins in E. Coli

• Moderately large system (M = 22)
• Disparate rates
• Scarce reactants and negative 

species

Results

Kierzek,
Bioiformatics 2002

Reaction Channel Reaction rate

R1 PLac + RNAP → PLacRNAP 0.17

R2 PLacRNAP → PLac + RNAP 10

R3 PLacRNAP → TrLacZ1 1

R4 TrLacZ1 → RbsLacZ + PLac + TrLacZ2 1

R5 TrLacZ2 → TrLacY2 0.015

R6 TrLacY1 → RbsLacY + TrLacY2 1

R7 TrLacY2 → RNAP 0.36

R8 Ribosome + RbsLacZ → RbsRibosomeLacZ 0.17

R9 Ribosome + RbsLacY → RbsRibosomeLacY 0.17

R10 RbsRibosomeLacZ → Ribosome + RbsLacZ 0.45

R11 RbsRibosomeLacY → Ribosome + RbsLacY 0.45

R12 RbsRibosomeLacZ → TrRbsLacZ + RbsLacZ 0.4

R13 RbsRibosomeLacY → TrRbsLacY + RbsLacY 0.4

R14 TrRbsLacZ → LacZ 0.015

R15 TrRbsLacY → LacY 0.036

R16 LacZ → dgrLacZ 6.42x10−5

R17 LacY → dgrLacY 6.42x10−5

R18 RbsLacZ → dgrRbsLacZ 0.3

R19 RbsLacY → dgrRbsLacY 0.3

R20 LacZ + lactose → LacZlactose 9.52x10−5

R21 LacZlactose → product + LacZ 431

R22 LacY → lactose + LacY 14

TABLE II: LacZ/LacY model (Kierzek8): reaction channels and rates.

26
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25 years DINFK
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(a)ε = 0.05 for R-leaping
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(b)ε = 0.1 for R-leaping
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(c)ε = 0.2 for R-leaping

FIG. 9:
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• LacZ/LacY genes expression and enzymatic/
transport activities of LacZ/LacY proteins in E. Coli
• Histogram errors vs CPU time

• Efficient sampling offers factor 2 in speed w.r.t. 
modified τ-leaping! 

Results

   modified τ-leaping 
x R-leaping
o R-leaping efficient sampling
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R-LEAP  for Stochastic Diffusion on Non-uniform Discretizations

ci ci+1ci−1 ci+2

h

hi =
h

2
hi−1 = h

Uniform Cells:

Non-uniform Cells:

ai,j(x) = Xi · ki,j

ki,j =
D

h2

ki,j = ?

Diffusion events between cells, i.e. propensity for diffusion from cell i to cell j:

cici−1 ci+1
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25 years DINFK

Stochastic Diffusion on Non-Uniform Mesh Using a Finite Volume [1]

dUi

dt
= −(ki,i+1 + ki,i−1)Ui + ki+1,iUi+1 + ki−1,iUi−1

Diffusion ProcessContinuum
∂u

∂t
= −∇ · J

J = −D(x)∇u
∂Ui

∂t
= −

∫

i
∇ · J dx

∂Ui

∂t
= J(ci −

hi

2
)− J(ci +

hi

2
)

Using the Divergence Theorem Approximating the Gradient in Fick’s Law

∇u(ci −
hi

2
) ≈ u(ci)− u(ci−1)

ci − ci−1
=

1
ci − ci−1

(
Ui

hi
− Ui−1

hi−1

)

...
dUi

dt
= −

(
Di,i+1

hi|ci − ci+1| +
Di,i−1

hi|ci − ci−1|

)
Ui +

(
Di+1,i

hi+1|ci − ci+1|

)
Ui+1 +

(
Di−1,i

hi−1|ci − ci−1|

)
Ui−1

[1] D. Bernstein. Simulating mesoscopic reaction-diffusion systems using the gillespie algorithm. Phys. Rev. E, 2005.

ki,j =

{
Di,j

hi|ci−cj | if |i− j| = 1
0 otherwise

Reaction Rates for Diffusion Events:
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• Inhomogeneous volume

• random collisions and reactions  in 
each volume element

• different species in each volume 
element

τ̂R

τ̂D
=

D

h2k

τR

τD
! 1

• Validity of spatial discretization lies 
in the assumption that:

τR

τD

•      is the mean free time with 
respect to reactive collisions in a 
volume element and       is the mean 
time during which a molecule will 
remain in a volume element.  

• For a bimolecular reaction with rate 
k and diffusion coefficient D, this  
can be estimated by

• h must therefore be small for the 
discretization to be valid

SSA using AMR

Kuramato,
Prog. Theor. Phys. 
1974

Bayati et al.,
PCCP. 2008
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i

j k

uj uk

ui

h

l

ul

δx

δy
γ2

γ3

γ4

γ1

• Diffusion in 2-D (3-D similar derivation)

u(s) ! u(s)(x, y, t)

ū(s)
i ! h−2

∫

i
u(s)

i dV

U (s)
i !

∫

i
ū(s)

i dV = ū(s)
i h2

• concentration of species s

• average concentration of 
species s in volume element i

• number of molecules

∂u(s)

∂t
= −∇ · J

J = −D∇u(s)

• start with macroscopic equations for diffusion

dU (s)
i

dt
= −

4∑

a=1

∫

γa

J · n dS

• Integrating the conservation equation over a volume 
element i, applying the divergence theorem on the 
right-hand-side, and decomposing the surface integral 
into faces yields:

SSA using AMR

Bernstein,
PRE. 2005
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• Gray-Scott Reaction-Diffusion System in 2-D
U + 2V → 3V V → ∅ U → ∅ ∅ → U

SSA using AMR
Pearson,
Science. 1993

• Gradient-based AMR - finite differences

• Deterministic

• Stochastic

hmin =
1

400

• Imperfect refinement criterion 
-some fluctuations are tagged 
as gradients

Henshaw et al.,
J. Comp. Phys. 
2008

hmax =
1

100
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• Fisher-Kolmogorov Reaction-Diffusion System in 2-D

SSA using AMR

1.25

0.938

0.625

0.312

0.0

hmax =
1

100
τ̂R

τ̂D
= 25

hmin =
1

800

• Fluctuations are 
stronger in smaller 
cells

• Not mesh effects

• < U > = 15

• Weak fluctuations 
in coarse region

• < U > = 960

L0L1L2L3

different physics

U + V
k−→ 2U

Fisher,
Ann. Eugenics 
1937

concentration, u
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• Fisher-Kolmogorov Reaction-Diffusion System in 2-D

SSA using AMR

U + V
k−→ 2U

Fisher,
Ann. Eugenics 
1937
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• Fisher-Kolmogorov Reaction-Diffusion System in 2-D

SSA using AMR

U + V
k−→ 2U

Fisher,
Ann. Eugenics 
1937

u ∈ [0.45, 0.55]
• halo is projected 1-D 

analytical solution  

67Tuesday, September 8, 2009

http://www.cse-lab.ethz.ch
http://www.cse-lab.ethz.ch


Fluids and Biology

ω = ∇× u

Dω

Dt
= ω ·∇u + ν∇2ω

Vorticity
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FLUIDS - Macroscale Conservation Laws

ω = ∇× u

Dω

Dt
= ω ·∇u + ν∇2ω

Vorticity
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COMPLEX GEOMETRIES : Diffusion in the ER

The main biosynthetic organelle in 
Eukaryotes: Protein and lipid synthesis.
Enclosed by a contiguous membrane

Membrane

Figure: De Duve, Une visite guidée de la cellule vivante, 1987.

Figure: D. Kunkel, (c) www.DennisKunkel.com

Figure: Purves et al., Life: The Science of Biology, W.H. Freeman. 

Lumen
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25 years DINFK

0 1 2 3 4 5 6 7 8 9 10
Time   [s]

0

0.2

0.4

0.6

0.8

1

FR
A

P 
  [

-]

• Tag protein fluorescently

• Laser Bleach region of interest 

• Monitor influx of unbleached 
protein

pre-bleach

t=0

t=2 min

FRAP : Fluorescence Recovery After Photobleaching

10µm

Helenius group (ETHZ)

D =?
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25 years DINFK

∂u(x, t)
∂t

= ∇ · (D(x, t)∇u(x, t))

D(x, t) = D(x) D(x, t) = D D(x, t) = ν(x, t)1
Normal Homogeneous Isotropic

Continuum assumption

Cases:

Diffusion

Recall  CFD :  “Vorticity”  becomes  “Concentration”

Dω

Dt
= ω ·∇u + ν∇2ω

dxp

dt
= uX X
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25 years DINFK

Diffusion  Approximations

Extendable to any diffusion operator

Diffusion 

Particles

∂c

∂t
= ν ∆c

Ch
ε (x, t) =

Np∑

p=1

hd
p cp(t) ζε(x− xp(t))

dcq

dt
=

ν

ε2

Np∑

p=1

(hd
p cp − hd

q cq) ζε(xq − xp)

PSE is Orders of magnitude better than random walk

Accuracy ~
1

N4

Cost ~ N 

Particle  Strength  Exchange

Degond & Mas-Gallic, Math. Comput. 53:509. 1989.
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Diffusion in the Endoplasmic Reticulum

3D 

representation of complex geometries 
using Lagrangian Particle Level Sets

Simulation of diffusion in the lumen of 
reconstructed  real biological  geometries
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25 years DINFK

D =
Dsim

ts

FRAP experiment

Experimental FRAP curve

Simulation

Simulated FRAP curve

Micrograph sections of the 
same organelle

3D reconstruction

Fit in time

Time unit ts
Molecular diffusion 

constant

3. Continuum Model: FRAP in the ER

Dsim

Integrate Imaging and Simulations
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25 years DINFK

Diffusion in the Real Endoplasmic Reticulum - LUMEN

Sbalzarini, Mezzacasa, Helenius, Koumoutsakos, Biophys. J. 89(3):1482. 2005.
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 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5

FR
AP

   
 [-

]

time    [s]

Simulation and 
Experiment in the 
same ER

Simulation

Experiment

in vivo diffusion 
constant from fit

Simulations and Experiments in the same Geometry

ValidationPrediction
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25 years DINFK

“...but, can you do this on a surface ?” - A. Helenius

Membrane:

 tsO45-VSVG-GFP

M
o

v
ie

: H
e

le
n

iu
s 

g
ro

u
p

, 
D

-B
IO

L
, 

E
T

H
Z
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Diffusion in the Real Endoplasmic Reticulum - SURFACE

Sbalzarini, Hayer, Helenius, Koumoutsakos, Biophys. J. 8, 90, 2006

79Tuesday, September 8, 2009



25 years DINFK

0 200 400 600
time   [sim. units]

0.0

0.1

0.2

0.3

0.4

0.5

FR
A

P 
  [

-]

lumen

membrane

Diffusion on reconstructed ER of  VERO cells

Using the same diffusion  constant recovery speed varies by >400%.  

ssGFP-KDEL in the ER lumen 

tsO45-VSVG-GFP in the ER 
membrane 

ν = 34± 0.95 µm2/s

ν = 0.16± 0.07 µm2/s
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25 years DINFK

Reactions on Surfaces 

Gray  Scott system U + 2V → 3V,

V → P

Deterministic
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GROWTH : Reaction-Diffusion on Deforming Geometries

“Well, the stripes are easy, but 
what  about the horse part “  ?   
Turing 

The Dragon : Grier-Meinhardt reaction kinetics

Hieber and Koumoutsakos,  Lagrangian Particle Level Sets, 
J. Comput. Phys., 2005
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CSElab
Computational Science & Engineering Laboratory

http://www.cse-lab.ethz.ch

RDG - Plant Growth

RDG - Equations
• Reaction-Diffusion on growing surface

• Surface changes over time

83

Γ(t)
xΓ(t)u

References:
Bergdorf, M., Sbalzarini, I. F., and Koumoutsakos, P. (2009).  A Lagrangian particle method for reaction-diffusion systems on deforming surfaces, Journal of Mathematical Biology (submitted)

∂ci

∂t
+∇Γ(t) · (ciu) = Di∆Γ(t)ci + Ri(c) on Γ(t), i = 1 . . . N,

N = Number of species,

c =
[
c1, . . . , cN

]
= Concentrations,

Di = Diffusion constant for species i,

Ri(c) = Reaction terms for species i.

Γ(t) = {xΓ(t)} ,

dxΓ

dt
= u(xΓ, cs).
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CSElab
Computational Science & Engineering Laboratory

http://www.cse-lab.ethz.ch

RDG - Plant Growth

Extended domain
• Species given in narrow

band around surface

• Use level set for surface

• Replace diffusion operator

• Extend concentration
• simplifies surface growth

84

Γ = { x | ϕ(x) = 0 } ,

n = ∇ϕ/‖∇ϕ‖

∂c

∂n
= ∇c · n = 0

Ds∇ · ((I− n⊗ n)∇c)
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CSElab
Computational Science & Engineering Laboratory

http://www.cse-lab.ethz.ch

RDG - Plant Growth

Plant growth with Brusselator

85

Holloway, D. M. and Harrison, L. G. (2008).  Pattern selection in plants: Coupling chemical dynamics to surface growth in three dimensions, Annals Of Botany, 101(3), 361--374

X > Xth :
∂X/∂t = DX∇2X + aA− bBX + cX2Y − dX,

∂Y /∂t = DY∇2Y + bBX − cX2Y,

X ≤ Xth :
∂X/∂t = DX∇2X − dX,

∂Y /∂t = DY∇2Y,

A given as prepattern based on spherical harmonics Y m
l ,

Initial condition based on A : X0 =
aA

d
, Y0 =

bB

cX0
,

Surface growth starting at t = tmove by u = vXn,

DX , DY , a, bB, c, d, Xth, tmove, v given as parameters.
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CSElab
Computational Science & Engineering Laboratory

http://www.cse-lab.ethz.ch

RDG - Plant Growth

Results (stronger A)

86

Settings:

A = Y 0
1 in [1, 16],

DX = 0.008, DY = 0.16,

a = 0.01, bB = 1.5,

c = 1.8, d = 0.07,

Xth = 0.035, v = 0.01,

tmove = 20,

Species here are
growing with surface.
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CSElab
Computational Science & Engineering Laboratory

http://www.cse-lab.ethz.ch

RDG - Plant Growth

Results (mass conservation)

87

Settings:

A = Y 0
1 in [1, 16],

DX = 0.008, DY = 0.16,

a = 0.01, bB = 1.5,

c = 1.8, d = 0.07,

Xth = 0.035, v = 0.01,

tmove = 20.
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Example  of  Deterministic  Models : Angiogenesis

WWW.BIOONCOLOGY.COM

CRANIAL VESSEL ANGIOGENESIS IN ZEBRAFISH
HTTP://ZFISH.NICHD.NIH.GOV/ZFATLAS/FLI-GFP/FLI_MOVIES.HTML
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Tumor-Induced Angiogenesis

Tissue
Vessel Network Cellular

Filopodia

Molecular
Growth factors
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A Model of Sprouting Angiogenesis

endothelial

tip cells

secrete

MMPs
ECM

soluble

VEGF

matrix-bound

VEGF

cleaved

VEGF

sprout

Growth factor:  VEGF
exists in two forms:
• soluble
• bound to the matrix (bVEGF)

Mechanism:
endothelial cells migrate towards source of
growth factors
• form cords
•proliferate
•branch / fuse

Release of bVEGF
endothelial cells secrete proteinases
proteinases cleave bVEGF → soluble 

tumor

necrotic 
core
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Extracellular Matrix
• fibrous proteins
• gels of polysaccharides
• sticky scaffolding
• structural support

Particle-mesh models for mesenchymal motion / PM4

AMOEBOID MIGRATION
SHAPE CHANGES
NO MATRIX REMODELING

CAMS/INTEGRINS
EVENLY DISTRIBUTED

“MESENCHYMAL” MOTION
FOCAL ADHESION, 
MOUNTAIN CLIMBING 

RECEPTOR CLUSTERING
CAMS/INTEGRINS/MMPS

MATRIX DEFECT

[1] M.  SIDANI, J.  WYCKOFF, C.  XUE, J.  E. SEGALL, AND J.  CONDEELIS. PROBING THE 
MICROENVIRONMENT OF MAMMARY TUMORS USING MULTIPHOTON MICROSCOPY. 
JOURNAL OF MAMMARY GLAND BIOLOGY AND NEOPLASIA, V11(2):151–163, 2006.

matrix to aid in the epithelial cells’ invasion during
morphogenesis [33].

In mammary tumors, collagen fibers become more
numerous and support the blood vessels of the tumor as
dense arrays of fibers that surround the vessels (Fig. 3).
These collagen fibers are co-opted by the carcinoma cells as
a highway system to migrate within the tumor and ulti-
mately to reach the blood vessels themselves[13, 26, 31].

On the other hand, the dense ECM that makes up the
basement membrane of blood vessels acts as a barrier
preventing the movement of tumor cells into blood vessels
[13].

Motility is Imperative in Determining Tumor Cell Fate
Inside the Primary Tumor

Tumor cell motility in vivo determines the microenviron-
ment in which the tumor cell is located, and hence its
invasion, intravasation and metastatic potential. During
movement, the cancer cell generates cycles of actin
polymerization which are important to determine cell
direction and for each of the consecutive steps of the
motility cycle [37]. Tumor cells in mammary tumors are
challenged by extracellular stimuli which originate from
their immediate microenvironment, such as neighboring
cancer cells, macrophages, and blood vessels. This stimu-
lation causes localized actin polymerization and protrusion
[37] followed by cell-ECM adhesion, contraction of the cell
body creating a tension between the adhesion sites, and
subsequently cell translocation [37] resembling an inch
worm-like motion (Fig. 4). Migrating cells need to degrade
and remodel the ECM in order to invade neighboring
tissues and basement membranes that surround blood
vessels; this process involves their ability to extend
protrusions into the ECM [38–40]. Recently, invadopodia
have been characterized as important in the metastasis of
cancer cells. These specialized structures contain many
actin-regulatory proteins, including N-WASP (WASP in
macrophages), and cofilin, adhesion molecules, signaling
proteins, and matrix degrading proteins (MMPs) [39].

Cell Motility Inside Tumors Involves an Array
of Different Cell Types Moving in Relation to ECM
and to Each Other

Multiphoton-based intravital imaging has shown that cancer
cells inside mammary tumors migrate as solitary amoeboid
cells, not as a collection of adherent cells, and at much
higher speeds than that seen in vitro (∼3.4 vs. 0.45 μm/min,
respectively) [12, 26]. The high velocity of tumor cell
motility in vivo may be explained by a combination of
factors, including the absence of a dense network of ECM
in tumor tissue, the presence of linear ECM fibers as a
substratum, and the unique gene expression pattern of
invasive tumor cells which makes them more motile and
chemotactic [12, 13, 26]. Current work has analyzed the
motility behaviors inside mammary tumors in vivo, derived
either from the injection of tumor cells into the mammary
glands or from spontaneous tumors of transgenic animals

Figure 3 The microenvironment of a mammary tumor can be imaged
using multiphoton microscopy. a Tumor cells with GFP-labeled Mena
(green) are seen growing as an epithelial layer and have Mena-GFP at
the cell periphery. Collagen (purple) is imaged by second harmonic-
generated polarized light. b Tumor cells (green) are associated with
ECM fibers (purple). ECM fibers not only support the tumor cells and
blood vessels but also act as roadways used by the tumor cells to
crawl toward blood vessels (arrow). Image is a 60 μm thick z-
projection. Scale bar for a and b = 25 μm.

J Mammary Gland Biol Neoplasia (2006) 11: 151–163 155

25µm

MAMMARY 
TUMOR CELLS

BLOOD VESSEL

The Cell
• confined by semipermeable membrane
• inside: cytosol (fluid) & organelles
• cell adhesion molecules on the membrane
• extends filopodia for sensing
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About scale:

Representing Cells:

Cellular automaton
• intuitive
• behavioral rules
• one “cell” = one cellFINER

FINER

FINER

Cellular Potts
• shape optimization
• interaction energies

Continuum
• cell density (= no individuals)
• PDEs

S
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“R
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M

”

Continuum modeling of cells 
Primary implications:

Cell density: ρ(x, t)

∂ρ

∂t
= −∇(u ρ) + k ρ

MIGRATION PROLIFERATION
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Existing continuum models:
either expensive (large radius of interaction), [1]

or expensive (leading to stiff PDEs) [2]

Continuum cell-cell adhesion:

[1] N.   J. ARMSTRONG, K.   J. PAINTER, AND J.  A. SHERRATT. A CONTINUUM 
APPROACH TO MODELLING CELL-CELL ADHESION. J. THEOR. BIOL., 2006.

[2] J. KIM. A CONTINUOUS SURFACE TENSION FORCE FORMULATION FOR 
DIFFUSE-INTERFACE MODELS. J. COMPUT. PHYS., 204(2):784–804, 2005.

Cell-cell adhesion as cell “signaling”:
cells secrete adhesion molecules
cells follow gradient of these CAMs (autocrine signal)
the CAMS:
• diffuse (slow)
• decay (fast)

SECRETED CELL
ADHESION MOLECULES

CELL CLUSTERρ

f

ac2c,ρ = κ∇f

∂f

∂t
= α ρ− µ f + D ∆f

SECRETION DECAY DIFFUSION

CELL-CELL ADHESION 
CONTRIBUTION TO MIGRATION
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Cell sorting by differential adhesion

The “differential adhesion hypothesis”

[1] M. S. STEINBERG. DIFFERENTIAL ADHESION IN MORPHOGENESIS: 
A MODERN VIEW. CURR. OPIN. GENET. DEV., 17(4):281–286, 2007.

of rhombomeres #3 and #5 after transplantation into a
wild-type host. In the reciprocal transplantation exper-
iment, wild-type cells transplanted into anEphA4MOhost
formed cohesive clumps with sharp boundaries within
rhombomeres #3 and #5. Both of these results are those
to be expected if the EphA4MO cells have significantly
lower cohesivity than their wild-type equivalents and
neither result would be expected on the premise that these
Eph-ephrin-based segregations are specified by repulsive
interactions alone. Cooke et al. propose that ‘‘EphA4-de-
pendent adhesion contributes to the cell sorting process
that underlies rhombomere-boundary formation.’’

Epithelial–mesenchymal transitions and
malignant invasion
What initiates an EMT?
In an epithelial–mesenchymal transition (EMT), an
epithelium loses its characteristic intercellular junctions
and its apicobasal polarity. Its cells adopt a fibroblast-like
form, become motile and move away. Examples are cel-
lular gastrular ingression at the amniote primitive streak
and emigration of the vertebrate neural crest. At the
molecular level, epithelial markers such as E-cadherin
and cytokeratins are downregulated and b-catenin is rele-
gated to the nucleus, whereas mesenchymal markers such
as vimentin, fibronectin, and smooth muscle actin are
upregulated (reviewed in [29,30]). Pleiotrophin, a ligand
for the receptor protein tyrosine phosphatase bzA, inacti-
vates the latter, allowing increased phosphorylation of its
many substrates. This removes cadherin function, reor-
ganizes the actin cytoskeleton, and brings about an EMT
in U373 human glioblastoma cells [31!].

A number of growth and transcription factors can also
initiate an EMT. Fibroblasts resulting from an EMT
produce fibroblast-specific protein 1 (FSP1), also known
as S100A4, encoded by a gene whose promoter contains
an element called fibroblast transcription site-1 (FTS-1).
Using a mouse kidney proximal tubular cell line, Venkov
et al. [32!!] have reported that the binding of a complex of
two proteins, CArG-box binding factor-A (CBF-A) and
KRAB-associated protein-1 (KAP-1) to this site initiates
transcription of the FSP1 gene and initiation of an EMT
with all its molecular concomitants. Moreover, the FTS-1
response element is also found in the promoter regions of
E-cadherin, b-catenin, desmoplakin, vimentin, ZO-1,
snail, twist, rho, a-smooth muscle actin, and many other
genes upregulated or downregulated in EMT. The
authors conclude that ‘the finding that the CBF-A/
KAP-1/FTS-1 complex is an activator of the genes encod-
ing the EMT proteome suggests that it is an early
proximal regulator, if not a candidate master gene’ in
the EMT program. Unlike increased cell motility, the
morphological changes characteristic of EMT, including
cytoskeletal reorganization and disruption of cell junc-
tions are, however, independent of cadherin switching
[33!!].

Malignant invasion: cell sorting in reverse?
The morphogenetic changes of EMT have invited com-
parison with malignant invasion, not without objection
[34], and it has been asked whether malignant invasion
can be seen as a case of sorting out in reverse, in which the
intercellular adhesive differentials favor intermixing
rather than segregation (Figure 3) [4,35]. Indeed, the
E-cadherin gene has been characterized as a tumor sup-
pressor gene and low or absent E-cadherin expression is
considered to be a hallmark of malignancy in carcinomas
of many kinds (reviewed in [4]).

Tissue cohesivity and invasiveness
The relationship between invasive potential and cell–cell
cohesivity has begun to be examined. Winters et al. [36!!]
measured the surface tensions of aggregates of three
malignant astrocytoma lines of different in vitro invasive
potentials, the latter measured by Matrigel transfilter
invasion. A strong inverse correlation was found between
aggregate cohesivity and invasion into Matrigel, but evi-
dence was not found to attribute these cell–cell adhesions
to cadherins. Using nine brain tumor cell lines, Hegedus
et al. [37] compared the pattern of invasion into type 1
collagen gels with aggregate surface tension, cadherin
expression level, aggregation rate in stirred suspension,
malignancy grade, content of matrix metalloproteinase
(MMP-1, MMP-2, MMP-3 and MMP-9), and of tissue
inhibitor of metalloproteinase (TIMP)-1. No simple cor-
relation was found between invasion pattern (which was
complex) and either the magnitude of aggregate surface
tension or MMP expression, although it was concluded
that ‘a consistent interpretation of the observed invasion
patterns can be given by simultaneously considering both
tissue cohesivity and cell–matrix interactions.’
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Figure 3

Cell sorting versus intermixing in prostate cancer. Normal Rat 2
fibroblast cells were co-aggregated for 24 hours in hanging drop
cultures with rat prostate cancer cells of two kinds. When combined
with the noninvasive Dunning rat prostate cancer AT-2 cell line, they
sorted out into sharply demarcated phases, with the fibroblasts
occupying the internal position (a). When combined with the highly
invasive MLL rat prostate cancer cell line, the two cell populations
intermixed to a great degree (b) (reprinted from [4], with permission
from the publisher).

Current Opinion in Genetics & Development 2007, 17:281–286 www.sciencedirect.com

[1]CELL SORTING a)VERSUS INTERMIXING b) IN PROSTATE CANCER

a b c d

∂ρi

∂t
= −∇ ·

(∑

j

aij ρi

)
+ di ∆ρi

∂fi

∂t
= −µi fi + αi ρi + Di∆fi

EFFICIENT BINDING

EFFICIENT BINDING

INEFFICIENT 
BINDING

aij = κij ∇fj

κ11

κ12 = κ21

κ22

e.g. sorting:

LARGE

LARGE

SMALL

i=1,2 CELL DENSITIES, DISCRETIZED WITH PARTICLES

ARTIFICIAL CAM CONCENTRATIONS

PARTIAL ENGULFMENT SORTING MIXING

T=2

T=10

κ11 = 0.25
κ22 = 0.025

κ12 = κ21 = 0.05

κ11 = 0.25
κ22 = 0.25

κ21 = 0.0
κ12 = 0.0 κ12 = 0.2

κ21 = 0.2

κ11 = 0.25
κ22 = 0.09

+ pressure due 
to close packing
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Extracellular Matrix : Structure

• Material occupying the space between cells

• Fibers of structural glycoproteins 
(collagen, laminin and fibrillin are distributed throughout the ECM, occupying 
~30% of the ECM)

• Collagens (the main component of the ECM cross-link with 
neighbouring collagens to form bundles)

[3] M. SIDANI, J. WYCKOFF, C. XUE, J. E. SEALL, AND J. CONDEELIS. PROBING THE MICROENVIRONMENT OF MAMMARY TUMORS USING MULTIPHOTON MICROSCOPY. J. MAMMARY GLAND BIOL. NEOPLASIA, V11(2):151-163, 2006

IN MOUSE:  
TUMOR CELLS 
(GREEN
ASSOCIATED 
WITH  ECM 
FIBERS (
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Extracellular Matrix (ECM) 

• Fibrous structures in ECM provide a guiding structure for migrating 
endothelial cells

• ECM fibers are subject of remodeling by migrating EC’s

• The ECM expresses binding sites for various growth factors and 
integrins

[4] N. D. KIRKPATRICK, S. ANDREOU, J. B. HOYING, AND U. UTZINGER. LIVE IMAGING OF COLLAGEN REMODELING DURING ANGIOGENESIS. AJP HEART.. PAGES 0124.2006-,2007
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Model matrix explicitly:
• structure: collection of fiber bundles
• function: cell-matrix adhesion sites

Modeling the Matrix:

Fibers:
• straight
• random direction
• distribution of lengths

l

b
α

l = l0 2m z

α ∈ U([0,π])
z ∈ N (0, 1)

Indicator field   :
• unity where fibers present 
• smoothed (implicit filopodia)

e
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Endothelial Cell-ECM Interaction

• ECM fibers provide a guiding structure (   ) for migrating ECs

• The ECM density      influences migration speed

• ECM expresses binding sites for matrix-bound VEGF and fibronectin

Eρ

T

{T}ij = (1− EX) {1}ij + EXKiKj

α (Eρ) = (0 + Eρ) (1− Eρ)

Migration Speed:

ECM density:

ECM direction:

a = α (Eρ)T (wV∇Ψ + wF∇Φb)
Chemotaxis HaptotaxisECM
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Existing models:

Chemotaxis & cell-matrix adhesion

aecm,φ =
[(

1−
∣∣∣
∇e

|∇e| · ∇φ

|∇φ|

∣∣∣
)
∇e +∇φ

] (
e + eo

)(
ρcpd − e

)

CLING TO FIBER
AN ADVANTAGE? WHERE IS THE

FIBER?
WHERE IS THE
GF SOURCE?

FIBERS FACILITATE
MIGRATION TOO MANY FIBERS

BLOCK MIG. PATH

PM4:

Opportunistic: get to growth factor (GF) source

aφ = ∇φ

∇φγ = 1

0 < γ < 1

γ = 0

γ
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Tip cell particles     :
• Discrete particle representation
• Particle location:
• Migration acceleration:
• Drag coefficient:

Endothelial Cell representation

xp

∂t
= up,

up

∂t
= ap − λup

xp

up

λ

Tip Cell “deposes” endothelial cells

Hybrid representation of ECs:

ρn+1
i = max

(
ρn

i ,
∑

p

B(ih− xp) Qp

)

Qp =
∑

i

h3qiM
′
4 (xp − ih)

Stalk cell density   :
• Continuum vessel representation 
• Tip and stalk communicate through Particle-Mesh, 

Mesh-Particle interpolations

Qp ρ
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The elements of migration

Tip Cell Migration

cells stick to cells
gradient of “haptotactic” 
molecules serve as migration cues

cells are guided by extracellular matrix
transmembrane CAMs: integrins,...)
facilitates migration

cells sense chemical gradients
gradients of “chemoattractant” serve as
migratory cues

a = α (Eρ)T (wV∇Ψ + wF∇Φb)

Migration Speed
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Growth Factors: Assumptions

• We model only one representative growth factor (VEGF)

• VEGF exists in a soluble and a matrix bound isoform

• Soluble VEGF is released from a tumor source

• Unbound VEGF diffuses through the ECM

• VEGF is subject to uptake by endothelial cells 

• decays naturally
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• Model : One VEGF isoform in soluble and bound state

• sVEGF establishes global chemotactic gradient

Soluble VEGF (sVEGF) - Assumptions

U ([sVEGF], ρ) = min ([sVEGF], υV ρ)

∂[sVEGF]
∂t

= kV∇2[sVEGF]− U ([sVEGF], ρ)− δV [sVEGF]

tu
m
o
r

ρ

• Tumor source modeled by boundary 

conditions 
•  sVEGF diffuses through ECM
•  Uptake of sVEGF by endothelial cells 

•  Subject of natural decay
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Matrix-bound VEGF (bVEGF)

• Some VEGF isoforms express 
heparin-binding sites binding to 
domains in the ECM  

• Local gradients of matrix bound 
VEGF influence sprout 
morphology

• Matrix bound VEGF is cleaved by 
MMPs released at endothelial 
sprout tips

[1] C. RUHRBERG, H. GERHARDT, M.  GOLDING, R. WATSON, S. IOANNIDOU, H. FUJISAWA, C. BETSHOLTZ AND D. T. SHIMA. SPATIALLY RESTRICTED PATTERNING CUES PROVIDED BY HEPARIN-BINDING VEGF-A CONTROL BLOOD 
VESSEL BRANCHING MORPHOGENESIS. GENES DEV., 16(20):2684-2698, 2002.
[2] S. LEE, S. M. JILAI, G. V.  NIKOLOVA,  D. CARPIZO, AND M. L. IRUELA-ARISPE. PROCESSING OF VEGF-A BY MATRIX METALLOPROTEINASES REGULATES BIOAVAILABILITY AND VASCULAR PATTERNING IN TUMORS. J. CELL BIOL., 
V42(3):195-238, 2001

[1]

ONLY MATRIX-BOUND VEGF

WILD TYPE

BL
O

O
D

 V
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LS

M
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R
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O

U
N

D
 V

EG
F
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• Initially distributed in pockets

• establishes local chemotactic gradient

• cleaved VEGF (cVEGF) becomes soluble

endothelial

tip cells

secrete

MMPs
ECM

soluble

VEGF

matrix-bound

VEGF

cleaved

VEGF

sprout

endothelial

tip cells

secrete

MMPs
ECM

soluble

VEGF

matrix-bound

VEGF

cleaved

VEGF

sprout

ρ

∂[bVEGF]
∂t

= −C ([bVEGF], [MMP])− U ([bVEGF], ρ)

C ([bVEGF], [MMP]) = min ([bVEGF], υbV [MMP][bVEGF])

∂[cVEGF]
∂t

= kV∇2[cVEGF] + C ([bVEGF], [MMP])− U ([cVEGF], ρ)− δV [cVEGF]

Matrix-bound VEGF - Assumptions

• bVEGF is cleaved by MMPs 
• Uptake of cVEGF by ECs

• cVEGF diffuses through ECM 
• cVEGF is subject to natural decay
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Angiogenesis: Post-dicting Experiments

ONLY SOLUBLE  VEGF

SOLUBLE & MATRIX-BOUND VEGF

Matrix-bound VEGF leads to increased branching.
vessel branching ↔ capillary function

RADIAL SOLUBLE VEGF GRADIENT AND 
LOCALIZED MATRIX-BOUND VEGF

[1] S.  LEE, S.  M. JILANI, G.  V. NIKOLOVA, D.  CARPIZO, AND M.  L. IRUELA-ARISPE. PROCESSING OF VEGF-A BY MATRIX 
METALLOPROTEINASES REGULATES BIOAVAILABILITY AND VASCULAR PATTERNING IN TUMORS. J. CELL BIOL., 169(4):681–
691, 2005.

BLOOD VESSEL FORMATION IN A MOUSE MODEL

ONLY SOLUBLE VEGF
> THICKER VESSELS

new: branching is an output of the simulation

SOLUBLE + MATRIX-BOUND VEGF
> INCREASED BRANCHING
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• decreases local chemotactic gradients

endothelial

tip cells

secrete

MMPs
ECM

soluble

VEGF

matrix-bound

VEGF

cleaved

VEGF

sprout

endothelial

tip cells

secrete

MMPs
ECM

soluble

VEGF

matrix-bound

VEGF

cleaved

VEGF

sprout

[EC]

∂[MMP]
∂t

= kM∇2[MMP] + γMG (Mth, [MMP]) [EC]− δM [MMP]

Mth

G (Mth, [MMP]) =
Mth − [MMP]

Mth

• RELEASED BY MIGRATING TIP-CELLS

• RELEASE BOUND BY THRESHOLD LEVEL 

• DIFFUSE THROUGH ECM

• SUBJECT TO NATURAL DECAY

MATRIX METALLOPROTEINASES
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25 years DINFKCSE  Lab

Milde F.,  Bergdorf M.,  Koumoutsakos P., A hybrid model of sprouting angiogenesis, Biophysical J.. 2008 
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Effect of Matrix structure on branching - Mesenchymal cells
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statistics over n = 50 different matrices
junctions identified with AngioQuant
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When you want to build a ship,
then do not drum the men together
in order to procure wood,
to give instructions or to distribute work;

but teach them longing for the wide endless sea

Antoine de Saint-Exypery

Text

What Next ?

Multiscaling

Open Source Software

Mathematicians in Labs

Computer Science 

COLLABORATION
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