

with: Basil BAYATI, Michael BERGDORF, Philippe CHATELAIN, Florian MILDE, Diego ROSSINELI, Gerardo TAURIELLO

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

GEOMETRIES

- Complex
- Deforming
- Multiscale

PHYSICS

- Heterogeneous
- Unsteady
- Multiscale

What methods do we need?

Adaptivity
Multiscaling (multi-resolution/physics)
Large Deformations
Heterogeneity
Efficient

- LAGRANGIAN
- HETEROGENEOUS
- SCALABLE

16384 Cores - 10 Billion Particles - 60% efficiency

Runs at IBM Watson Center - BLue Gene/L

Chatelain P., Curioni A., Bergdorf M., Rossinelli D., Andreoni W., Koumoutsakos P., Billion Vortex Particle Direct Numerical Simulations of Aircraft Wakes, Computer Methods in Applied Mech. and Eng. 197/13-16, 1296-1304, 2008

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

CSE Lat

512 Cores - 10 Million Particles

Milde F., Bergdorf M., Koumoutsakos P., A hybrid model of sprouting angiogenesis, Biophysical J.. 2008

CSE La

Particle Simulation of Elastic Solid

Plane Strain Compression Test

- Pistons move with constant velocity
- Elastic solid fixed to the pistons
- Highly dynamic deformation of large extent

http://www.icos.ethz.ch/cse

Particle Simulation of Elastic Solid

Plane Strain Compression Test

- Pistons move with constant velocity
- Elastic solid fixed to the pistons
- Highly dynamic deformation of large extent

http://www.icos.ethz.ch/cse

Plane Strain Compression Test

Redistributed Particle solution

FEM solution (ABAQUS 6.4/Explicit)

Linear Elasticity

Young's Modulus =100 Poisson ratio=0.49 ~2000 particles/nodes

Nonlinear Elasticity

Hyperelastic Material C_{10} =2.2, D=0.001 ~2000 particles/nodes

S.E. Hieber and P. Koumoutsakos A Lagrangian particle method for the simulation of linear and nonlinear elastic models of soft tissue. *al., J. Comp. Physics, 2008*

http://www.icos.ethz.ch/cs

Why Adaptive Methods?

Anatomy of a Simulation & 3 Gaps in Computing

Adapted from: US-DOE

Particles: "Smooth" - Discrete

Smooth = APPROXIMATE

- Smoothed Particle Hydrodynamics
- Vortex Methods
- •Lagrangian level sets

Discrete = MODEL

- Molecular Dynamics (MD)
- Dissipative Particle Dynamics
- Stochastic Simulation

Particle Methods: an N-BODY problem

Particle (position, value) $i, j = 1, \dots, N$

$$\frac{dx_i}{dt} = U(q_j, q_i, x_i, x_j, \cdots)$$

$$\frac{dq_i}{dt} = F(q_j, q_i, x_i, x_j, \cdots)$$

SMOOTH

Particles are quadrature points for continuum properties RHS of ODEs: quadratures of integral equations

DISCRETE:

Particles as carriers of physical properties - Models RHS of ODEs: Physical models - Particle interactions

Multipole Algorithms, Fast Poisson solvers, Adaptivity, multiresolution, multiphysics

PARTICLES Smooth & Discrete

Smooth/Discrete Particles

"To let a drop of ink fall into water is a simple and most beautiful experiment."

D'Arcy Wentworth Thompson
On Growth and Form

J. H. Walther, P. Koumoutsakos, Three-dimensional vortex methods for particle-laden flows with two-way coupling, J. Comput. Phys., 167, 39-71, 2001

The 1920's

Rosenhead - Hand Calculations of a Vortex Sheet

The 50's

Feynman - Vortex Filaments: How do they break and reconnect?

The 60's: Marker And Cell (MAC) - (velocity - pressure)

F.H. Harlow and E.J. Welch

Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface,, Harlow, Francis H. and Welch, J. Eddie, Physics of Fluids, 1965

vortex Particle Methods: From the 60's to the 80's

vortex Particle Methods: From the 60's to the 80's

t = 00.01

What stopped Vortex Methods?

3D - Boundaries Cost

No theory of convergence

•••••

Particles strike back: SPH (Monaghan, Lucy, 1970's)

GRID FREE + LAGRANGIAN/ADAPTIVE + NO POISSON EQUATION

Growth of Black Holes Springel, MPI – Hernquist, Harvard

Lucy, 1974: A numerical scheme for the testing of the fission hypothesis, Astron. J.

FLUIDS and PARTICLES: CFD and GRAPHICS

Star Trek

How does it work?

locations x_p volumes $v_p = h_p^d$

properties

$$\mathbf{Q}_p(t) = q(x_p, t)$$

Function approximation

$$q_{\epsilon}^{h}(x,t) = \sum_{p=1}^{N_p} h_p^d Q_p(t) \zeta_{\epsilon}(x - x_p(t))$$

Interface Tracking versus Capturing

- Explicit description
- Lagrangian framework
- Interface distortion requires reseeding

- Implicit description
- Eulerian framework

PARTICLE METHODS: Geometry

Volume particles

- Particles are quadrature points
- Easy to discretize COMPLEX GEOMETR

Surtace particles

 $\Phi = 0$

• Surface Operators - Anisotropic Volume Operators — • _ • _ • _ •

PARTICLES + LAGRANGIAN ADAPTIVITY

$$\frac{\partial q}{\partial t} + \nabla \cdot (\boldsymbol{u}q) = \mathcal{L}(q, x; t)$$

Lagrangian form:

$$\frac{Dq}{Dt} = \mathcal{L}(q, x; t)$$

PARTICLES

no linear stability constraints = no CFL (dt<dx/u) condition

$$\frac{d\mathbf{x}_p}{dt} = \mathbf{u}(\mathbf{x}_p, t),$$

positions

initial values

on lattice

$$\frac{dv_p}{dt} = v_p \left(\nabla \cdot \mathbf{u} \right) \left(\mathbf{x}_p, t \right),$$

volumes

$$v_p = h^d$$

$$\frac{dv_p}{dt} = v_p \left(\nabla \cdot \mathbf{u}\right) \left(\mathbf{x}_p, t\right),$$

$$\frac{dQ_p}{dt} = v_p \mathcal{L}^{\varepsilon, h}(q, \mathbf{x}_p, t).$$

$$Q_p = q(\boldsymbol{x}_p, 0) v_p$$

CONTINUUM: Lagrangian Form of Governing Equations

$$\frac{Dx_p}{Dt} = u_p$$

Volumes

$$\frac{Dv_p}{Dt} = v_p(\nabla \cdot \mathbf{u})_p$$

Mass Conservation

Properties

$$\rho_p \frac{D\mathbf{u_p}}{Dt} = (\nabla \cdot \sigma)_p$$

Momentum Conservation

$$\sigma_p = -p_p I + \overline{\sigma}_p$$

evaluation depends on the constitutive model

Interfaces

$$\frac{D\Phi_p}{Dt} = 0$$

$$\frac{\partial \Phi}{\partial t} + \frac{\text{Particle}}{u \cdot \nabla \Phi = 0}$$
$$= \{\mathbf{x} \in \Omega \mid \phi(\mathbf{x}, t)\}$$

Particle Level sets: 3D curvature-driven flow:
$$\begin{array}{c|c} & \nabla \Phi = 0 \\ + \underbrace{u \cdot \nabla \Phi}_{\mathbf{x} \in \Omega} = 0 \\ - \underbrace{\{\mathbf{x} \in \Omega \mid \phi(\mathbf{x},t) = 0\}} \end{array}$$

$$\begin{aligned} |\nabla \phi| &= 1\\ \frac{\partial \phi}{\partial t} + \kappa & \sqrt{\phi} &= 0\\ \kappa &= \nabla \cdot n \end{aligned}$$

$$\frac{D\Phi_p}{Dt} = 0 \qquad \frac{dx_p}{dt} = \mathbf{u}$$

Lagrangian Particle Level Set Method, Hieber and Koumoutsakos, J. Comp. Phys. 2005

Benchmark: Rigid Body Motion

- Problem of rotating slotted disk/sphere
- Particle level sets exact for rigid body motion

Particle level set method (800 particles)

Are grid-free Particle Methods Accurate?

Smooth Particles must Overlap

Particle Approximation =

$$\Phi_{\epsilon}(x) = \int \Phi(y) \zeta_{\epsilon}(x - y) dy$$

Quadrature

$$\Phi_{\epsilon}(x) = \int \Phi(y) \, \zeta_{\epsilon}(x-y) \, dy$$

$$\Phi_{\epsilon}^{h}(x,t) = \sum_{p=1}^{N_p} h_p^d \, \Phi_p(t) \, \zeta_{\epsilon}(x-x_p(t))$$

$$||\Phi - \Phi_{\epsilon}^{h}|| \leq ||\Phi - \Phi_{\epsilon}|| + ||\Phi_{\epsilon} - \Phi_{\epsilon}^{h}||$$

$$\leq C_{1} \epsilon^{r} + C_{2} \left(\frac{h}{\epsilon}\right)^{m} ||\Phi||_{\infty}$$

NOTES:

- Must have h/ε < 1 for the quadrature to be accurate i.e. PARTICLES MUST OVERLAP.
- References: J. Raviart (1970's), O. Hald (1980's), T. Hou (1990's), G.H. Cottet (1990's)

Lagrangian distortion and REMESHING

Particles follow flow trajectories

- distortion of particle locations
- loss of overlap
- •loss of convergence

Preventive action: remeshing

Reinitialize particles on a regular grid.

$$Q_{\boldsymbol{i}}^{\mathrm{new}} = \sum_{p} Q_{p} \, \zeta^{h} (\boldsymbol{i}h - \boldsymbol{x}_{p})$$

Limiting: Introduction of a grid

Enabling:

- Fast Poisson solvers
- Access versatility of finite differences
- Enabling efficient multiresolution adaptivity

Remeshing = Regularization = Resampling

A new regularized particle set from the old one

$$Q_p^{\text{new}} = \sum_{p'} Q_{p'} M(j h - x_{p'})$$

Interpolation Kernel M(x)

- Moment conserving
- Tensorial Product of 1D kernels

REFERENCES:

Vortex Methods: PK and Leonard, JFM, 1995, and PK, JCP, 1997

SPH: Chaniotis, Poulikakos and PK, JCP, 2002

Hybrid Particle Mesh

Tachniques

step 1: ADVECT: Particles

step 2: REMESH: Particles to Mesh nodes

step 3 : SOLVE : field equations / Derivatives <u>on</u>

Mesh

step 4: RESAMPLE: Mesh Nodes BECOME Particles

Particle Methods are adaptive yet Inefficient

Koumoutsakos and Leonard, JFM,1994

Particles and Multiple Scales/Physics

Wavelet - Particle Method

Keypoints: Wavelets guide particle refinement.

Lagrangian convection of small scales

Multi-Particle Methods

Keypoints: Coupling Discrete and Smooth Particle Methods Interface of different physics and numerics

Wavelet-particle method

mollification kernel basis/scaling function

Multiresolution analysis (MRA) $\{\mathcal{V}^l\}_{l=0}^L$ of particle quantities

Refineable kernels as basis functions of \mathcal{V}^l

Wavelets as basis functions of the complements \mathcal{W}^l

$$\zeta_k^l = \sum_j h_{j,k}^l \zeta_j^{l+1}$$

$$= \sum_j \tilde{h}_{j,k}^l \zeta_j^l + \sum_j \tilde{g}_{j,k}^l \psi_j^l$$

$$= +$$

M. Bergdorf, P. Koumoutsakos. A Lagrangian Particle-Wavelet Method. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 5(3), 980-995, 2006

Multiresolution function representation:

Analysis (collocation): $d_k^l \sim |$ fine - Prediction(coarse) |

$$q^L = \sum_k c_k^0 \, \zeta_k^0 \, + \sum_{l < L} \sum_k \frac{d_k^l \, \psi_k^l}{\psi_k^l}$$
 Ground level Detail Coefficients

Each wavelet is associated with a specific grid point/particle (2D)

Compression/Adaptation:

<code>Discard</code> insignificant detail coefficients: $|d^{l,m}_{m{k}}|<arepsilon$

Compressed → Adapted grid

$$\|q^L - q_{\geq}^L\| < \varepsilon$$

Remeshing + MultiResolution Analysis

- 1.Remesh
- 2. Wavelets- Compress/Adapt
- 3.Convect
- 4. Wavelets Reconstruct
- 5.GOTO 1

$$q^L = \sum_k c_k^0 \, \zeta_k^0 \, + \sum_{l < L} \sum_k d_k^l \, \psi_k^l$$
 "ground" level detail coefficients wavelets

Wavelet - Particle Level sets

$$\frac{\partial \Phi}{\partial t} + \mathbf{u} \cdot \nabla \Phi = 0$$
$$\mathbf{u} = \mathbf{n} \nabla \cdot \mathbf{n}$$

Solve with particles:

$$\Phi_{\epsilon}^{h} = \sum_{p=1}^{N_p} h_p^d \Phi_p(t) \zeta_{\epsilon}(x - x_p(t))$$

$$\frac{dx_p}{dt} = \mathbf{u}_p \quad \frac{d\Phi_p}{dt} = 0$$

$$\Gamma(t) = \{ \mathbf{x} \in \Omega \mid \phi(\mathbf{x}, t) = 0 \}$$

$$|\nabla \phi| = 1$$

CFL = 40

Hieber and Koumoutsakos, J. Comp. Phys. 2005 Bergdorf and Koumoutsakos, SIAM Multisc. Mod. Simul., 2007

Wavelet Particle Level sets - 3D

Key Issues: Data Structures & Software Engineering

Stochastic Simulation Algorithms

For M reactions, time until any reaction

$$\tau \sim \mathcal{E}(1/a_0) \qquad a_0 = \sum_{j=1}^{m} a_j$$

• Reaction index : point-wise distribution $p(j=l)=rac{a_l}{a_0}$

- One timestep:
 - Sample **T**
 - Sample the index j
 - Update the X_i, t=t+T

exact BUT slow

The SSA simulates <u>every</u> reaction event!

T-leaping: several reaction events over one time step,

 Assumption: reaction propensities a_i remain essentially constant over τ, in spite of several firings

• Over this given \mathbf{T} , the number of reaction firings K_j^P is governed by a Poisson distribution

$$K_j^{\mathcal{P}} \sim \mathcal{P}(a_j \tau) \sum_{j=1}^{M} K_j^{\mathcal{P}} \boldsymbol{\nu}_j.$$

Cost ~ M Poisson samplings

T leaping: Fast BUT Inexact

T leaping: Can generate negative populations

• Binomial T leaping: Approximate the unbounded Poisson

distributions with Binomial ones

Tian & Burrage, J. Chem. Phys. 2004 Chatterjee et al., J. Chem. Phys. 2005

Modified T leaping

Cao et al., J. Chem. Phys. 2005

- Critical reactions, i.e. those likely to drive some populations negative, handled by SSA
- Other reactions advanced by τ leaping

R-leaping: Accelerate SSA by reaction leaps

Leaps: prescribe number of firings L across all channels

- Time increment \mathbf{T}_{L} is Gamma-distributed $\tau_L \sim \Gamma(L, 1/a_0(\mathbf{x}))$
- ullet In this interval we will have K_m firings of channel $\,R_m$
- with: $\sum_{m=1}^{N} K_m = L$
- In R-leaping, (as in SSA), the index j of every firing obeys a point-wise distribution $P(j=l) = \frac{a_l(\mathbf{x})}{a_0(\mathbf{x})} \text{ for } l=1,\ldots,M.$

Auger, Chatelain, Koumoutsakos, R-leaping: Accelerating the stochastic simulation algorithm by reaction leaps. J. Chem. Phys., 125, 84103, 2006

Define L

$$\tau_L \sim \Gamma(L, 1/a_0(\mathbf{x}))$$

Sample the index j

$$P(j=l) = \frac{a_l(\mathbf{x})}{a_0(\mathbf{x})}$$
 for $l = 1, \dots, L$.

Number of reactions for channel m

$$K_m = \sum_{l=1}^{L} \delta_{l,m}$$

Update species and time :

$$\mathbf{X}(t+\tau_L) = \mathbf{X}(t) + \sum_{j=1}^{M} K_j \boldsymbol{\nu}_j$$

R-leaping: Accelerate SSA by reaction leaps

- L firings distributed across M reaction channels
 - In τ leaping: K_i^p are independent Poisson variables.
 - In R-leaping, K_i are not independent.
- Las a control parameter
 - System can be brought to a desired state X
 - Time is not a-priori specified
 - New approaches to controlling negative species

Tuesday, September 8, 2009 52

R-leaping: How to Sample the the M K_j

R_0 Algorithm

 Pointwise Sampling of Lindependent reaction indices

$$p(j=l) = \frac{a_l}{a_0}$$

Simple BUT scales with L - close to the work load of SSA!

Ro-sampling scales with L and, in particular when compared with τ -leaping that scales with M, the method is inefficient for large leap sizes, L \gg M.

R-Leaping Theorem

The distribution of K_1 is a binomial distribution :

$$\mathcal{B}(L, a_1(\mathbf{x})/a_0(\mathbf{x}))$$

and for every $m \in \{2, \ldots, M\}$ the conditional distribution of K_m

given the event $\{(K_1, \dots, K_{m-1}) = (k_1, \dots, k_{m-1})\}$ is

$$K_m \sim \mathcal{B}\left(L - \sum_{i=1}^{m-1} k_i, \frac{a_m(\mathbf{x})}{a_0(\mathbf{x}) - \sum_{i=1}^{m-1} a_i(\mathbf{x})}\right)$$

This result is invariant under any permutation of the indices

R-leaping: How to Sample the the M K_j

R_0 Algorithm

Pointwise Sampling of Lindependent reaction indices

$$p(j=l) = \frac{a_l}{a_0}$$

Simple BUT scales with L - close to the work load of SSA!

Ro-sampling scales with L and, in particular when compared with au -leaping that scales with M, the method is inefficient for large leap sizes, L \gg M.

R_1 Algorithm

Sampling M correlated binomial variables

$$\mathcal{B}(L, a_j/a_0)$$

Create correlations with conditional distributions

If
$$K_i = k_i, \forall i < m,$$

$$K_m \sim \mathcal{B}\left(L - \sum_{i=1}^{m-1} k_i, \frac{a_m}{a_0 - \sum_{i=1}^{m-1} a_i}\right)$$

R-leaping: Efficient Sampling / Sorting

- Sampling the M K_j efficiently (SORT the reactions)
 - M can be large (~10²) for bio-chemical systems!
 - Efficient sampling effectively loops over a fraction of M.

The larger the system, the bigger the payoff.

- The more disparate the reaction rates are, the smaller the fraction.
- Price to pay: carry out re-ordering often enough (cheap!)

Number of binomial samples per time step LacYLacZ activities in E. Coli., M=22

Stochastic simulation: R-leaping

- Controlling the leap approximation
 - All three methods of **T** leaping are transposable to Rleaping
 - Absolute change of a_j
 - Relative change of a_i
 - Relative change of a_j but efficiently through the relative changes in populations

Results

 LacZ/LacY genes expression and enzymatic/ transport activities of LacZ/LacY proteins in E. Coli

Kierzek, Bioiformatics 2002

- Moderately large system $(M = 22)^{R_3}$
- Disparate rates
- Scarce reactants and negative species

```
Reaction Channel
                                                            Reaction rate
              PLac + RNAP \rightarrow PLacRNAP
                                                                  0.17
R_1
              PLacRNAP \rightarrow PLac + RNAP
                                                                   10
                  PLacRNAP \rightarrow TrLacZ1
        TrLacZ1 \rightarrow RbsLacZ + PLac + TrLacZ2
                    TrLacZ2 \rightarrow TrLacY2
                                                                 0.015
R_6
            TrLacY1 \rightarrow RbsLacY + TrLacY2
                                                                   1
                     TrLacY2 \rightarrow RNAP
                                                                  0.36
      Ribosome + RbsLacZ \rightarrow RbsRibosomeLacZ
                                                                  0.17
                                                                  0.17
     Ribosome + RbsLacY \rightarrow RbsRibosomeLacY
     RbsRibosomeLacZ \rightarrow Ribosome + RbsLacZ
                                                                  0.45
R_{11} RbsRibosomeLacY \rightarrow Ribosome + RbsLacY
                                                                  0.45
R_{12} RbsRibosomeLacZ \rightarrow TrRbsLacZ + RbsLacZ
                                                                  0.4
R_{13} RbsRibosomeLacY \rightarrow TrRbsLacY + RbsLacY
                                                                  0.4
R_{14}
                    TrRbsLacZ \rightarrow LacZ
                                                                 0.015
R_{15}
                    TrRbsLacY \rightarrow LacY
                                                                 0.036
                     LacZ \rightarrow dgrLacZ
                                                               6.42 \times 10^{-5}
                                                              6.42 \text{x} 10^{-5}
                     LacY \rightarrow dgrLacY
                 RbsLacZ \rightarrow dgrRbsLacZ
                                                                  0.3
                 RbsLacY \rightarrow dgrRbsLacY
R_{19}
                                                                  0.3
R_{20}
              LacZ + lactose \rightarrow LacZlactose
                                                              9.52 \times 10^{-5}
R_{21}
             LacZlactose \rightarrow product + LacZ
                                                                  431
R_{22}
                 LacY \rightarrow lactose + LacY
                                                                   14
```

Results

- LacZ/LacY genes expression and enzymatic/ transport activities of LacZ/LacY proteins in E. Coli
 - Histogram errors vs CPU time

 Efficient sampling offers factor 2 in speed w.r.t. modified **T**-leaping!

R-LEAP for Stochastic Diffusion on Non-uniform Discretizations

Diffusion events between cells, i.e. propensity for diffusion from cell i to cell j:

$$a_{i,j}(\mathbf{x}) = X_i \cdot k_{i,j}$$

Uniform Cells:
$$k_{i,j} = \frac{D}{h^2}$$

Non-uniform Cells:
$$k_{i,j}=?$$

$$h_{i-1} = h h_i = \frac{h}{2}$$

Stochastic Diffusion on Non-Uniform Mesh Using a Finite Volume [1]

Continuum

$$\frac{\partial u}{\partial t} = -\nabla \cdot J$$

$$J = -D(x)\nabla u$$

Diffusion Process

$$\frac{dU_i}{dt} = -(k_{i,i+1} + k_{i,i-1})U_i + k_{i+1,i}U_{i+1} + k_{i-1,i}U_{i-1}$$

$$\frac{\partial U_i}{\partial t} = -\int_i \nabla \cdot J \ dx$$

Using the Divergence Theorem

$$\frac{\partial U_i}{\partial t} = J(c_i - \frac{h_i}{2}) - J(c_i + \frac{h_i}{2})$$

Approximating the Gradient in Fick's Law

$$\nabla u(c_i - \frac{h_i}{2}) \approx \frac{u(c_i) - u(c_{i-1})}{c_i - c_{i-1}} = \frac{1}{c_i - c_{i-1}} \left(\frac{U_i}{h_i} - \frac{U_{i-1}}{h_{i-1}} \right)$$

$$\frac{dU_i}{dt} = -\left(\frac{D_{i,i+1}}{h_i|c_i - c_{i+1}|} + \frac{D_{i,i-1}}{h_i|c_i - c_{i-1}|}\right)U_i + \left(\frac{D_{i+1,i}}{h_{i+1}|c_i - c_{i+1}|}\right)U_{i+1} + \left(\frac{D_{i-1,i}}{h_{i-1}|c_i - c_{i-1}|}\right)U_{i-1}$$

Reaction Rates for Diffusion Events:

$$k_{i,j} = \begin{cases} \frac{D_{i,j}}{h_i|c_i - c_j|} & \text{if } |i - j| = 1\\ 0 & \text{otherwise} \end{cases}$$

[1] D. Bernstein. Simulating mesoscopic reaction-diffusion systems using the gillespie algorithm. Phys. Rev. E, 2005.

- Inhomogeneous volume
- random collisions and reactions in each volume element
- different species in each volume element
- Validity of spatial discretization lies in the assumption that: Kuramato,

$$\frac{\tau_R}{\tau_D} \gg 1$$

Prog. Theor. Phys. 1974

- τ_R is the mean free time with respect to reactive collisions in a volume element and τ_D is the mean time during which a molecule will remain in a volume element.
- For a bimolecular reaction with rate k and diffusion coefficient D, this can be estimated by

 Bayati et al.,

$$\frac{\hat{\tau}_R}{\hat{\tau}_D} = \frac{D}{h^2 k}$$

Bayati et al., PCCP. 2008

h must therefore be small for the discretization to be valid

www.cse-lab.ethz.ch

Diffusion in 2-D (3-D similar derivation)

$$u^{(s)} \triangleq u^{(s)}(x, y, t)$$
$$\bar{u}_i^{(s)} \triangleq h^{-2} \int u_i^{(s)} dV$$

concentration of species s

$$\bar{u}_i^{(s)} \triangleq h^{-2} \int_i u_i^{(s)} \, \mathrm{d}V$$

average concentration of species s in volume element i

$$U_i^{(s)} \triangleq \int_i \bar{u}_i^{(s)} \, dV = \bar{u}_i^{(s)} h^2 \quad \bullet$$

number of molecules

PRE. 2005

$$\frac{\partial u^{(s)}}{\partial t} = -\nabla \cdot \mathbf{J}$$

$$\mathbf{J} = -D\nabla u^{(s)}$$

Integrating the conservation equation over a volume element i, applying the divergence theorem on the right-hand-side, and decomposing the surface integral into faces yields: Bernstein,

$$\frac{\mathrm{d}U_i^{(s)}}{\mathrm{d}t} = -\sum_{a=1}^4 \int_{\gamma_a} \mathbf{J} \cdot \mathbf{n} \, \mathrm{d}S$$

Gray-Scott Reaction-Diffusion System in 2-D

$$U + 2V \rightarrow 3V$$
 $V \rightarrow \emptyset$ $U \rightarrow \emptyset$ $\emptyset \rightarrow U$

$$V o \emptyset$$

$$U \to \emptyset$$

$$\emptyset \to U$$

Pearson, Science. 1993

- Stochastic
- Imperfect refinement criterion -some fluctuations are tagged as gradients

$$h_{min} = \frac{1}{400}$$
 $h_{max} = \frac{1}{100}$

Deterministic

Gradient-based AMR - finite differences

Henshaw et al., J. Comp. Phys. 2008

www.cse-lab.ethz.ch

• Fisher-Kolmogorov Reaction-Diffusion System in 2-D

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

www.cse-lab.ethz.ch

• Fisher-Kolmogorov Reaction-Diffusion System in 2-D

$$U + V \xrightarrow{k} 2U$$

Fisher, Ann. Eugenics 1937

www.cse-lab.ethz.ch

• Fisher-Kolmogorov Reaction-Diffusion System in 2-D

$$U + V \xrightarrow{k} 2U$$

Fisher, Ann. Eugenics 1937

 $u \in [0.45, 0.55]$

halo is projected 1-D analytical solution

www.cse-lab.ethz.ch

Fluids and Biology

FLUIDS - Macroscale Conservation Laws

Figure: D. Kunkel, (c) www.DennisKunkel.com

The main biosynthetic organelle in Eukaryotes: Protein and lipid synthesis. Enclosed by a contiguous membrane

COMPLEX GEOMETRIES: Diffusion in the ER

FRAP: Fluorescence Recovery After Photobleaching

- Tag protein fluorescently
- Laser Bleach region of interest
- Monitor influx of unbleached protein

Helenius group (ETHZ)

Diffusion

Continuum assumption

$$\frac{\partial u(\boldsymbol{x},t)}{\partial t} = \nabla \cdot (\boldsymbol{D}(\boldsymbol{x},t) \nabla u(\boldsymbol{x},t))$$

Cases:
$$oldsymbol{D}(oldsymbol{x},t) = oldsymbol{D}(oldsymbol{x})$$
 Normal

Cases:
$$m{D}(m{x},t) = m{D}(m{x})$$
 $m{D}(m{x},t) = m{D}$ $m{D}(m{x},t) = \nu(m{x},t)\mathbb{1}$ Normal Homogeneous Isotropic

Recall CFD: "Vorticity" becomes "Concentration"

$$\frac{D\omega}{Dt} = \omega \nabla \mathbf{u} + \nu \nabla^2 \omega \qquad \frac{dx_p}{dt} = \mathbf{u}$$

Diffusion Approximations

Diffusion

$$\frac{\partial c}{\partial t} = \nu \, \Delta \mathbf{c}$$

Particles

$$C_{\epsilon}^{h}(x,t) = \sum_{p=1}^{N_{p}} h_{p}^{d} c_{p}(t) \zeta_{\epsilon}(x - x_{p}(t))$$

Particle Strength Exchange

$$\frac{dc_q}{dt} = \frac{\nu}{\epsilon^2} \sum_{p=1}^{N_p} (h_p^d c_p - h_q^d c_q) \zeta_{\epsilon}(x_q - x_p)$$

Accuracy ~ $\frac{1}{N^4}$ Cost ~ N Degond & Mas-Gallic, Math. Comput. 53:509. 1989.

Extendable to any diffusion operator

PSE is Orders of magnitude better than random walk

Diffusion in the Endoplasmic Reticulum

Simulation of diffusion in the lumen of reconstructed real biological geometries

Integrate Imaging and Simulations

Diffusion in the Real Endoplasmic Reticulum - LUMEN

76

Simulations and Experiments in the same Geometry

"...but, can you do this on a surface?" - A. Helenius

Membrane:

tsO45-VSVG-GFP

Diffusion in the Real Endoplasmic Reticulum - SURFACE

Diffusion on reconstructed ER of VERO cells

ssGFP-KDEL in the ER lumen $\nu=34\pm0.95\,\mu\mathrm{m}^2/\mathrm{s}$ tsO45-VSVG-GFP in the ER $\nu=0.16\pm0.07\,\mu\mathrm{m}^2/\mathrm{s}$ membrane

Using the same diffusion constant recovery speed varies by >400%.

Reactions on Surfaces

Gray Scott system
$$U+2V \longrightarrow 3V,$$

Deterministic

"Well, the stripes are easy, but what about the horse part"?
Turing

Hieber and Koumoutsakos, Lagrangian Particle Level Sets, J. Comput. Phys., 2005

GROWTH: Reaction-Diffusion on Deforming Geometries

RDG - Equations

Reaction-Diffusion on growing surface

$$\frac{\partial c_i}{\partial t} + \nabla_{\Gamma(t)} \cdot (c_i \mathbf{u}) = D_i \Delta_{\Gamma(t)} c_i + R_i(\mathbf{c}) \quad \text{on } \Gamma(t), i = 1 \dots N,$$

$$N = \text{Number of species},$$

$$\mathbf{c} = \begin{bmatrix} c_1, \dots, c_N \end{bmatrix} = \text{Concentrations},$$

$$D_i = \text{Diffusion constant for species } i,$$

$$R_i(\mathbf{c}) = \text{Reaction terms for species } i.$$

Surface changes over time

References:

Bergdorf, M., Sbalzarini, I. F., and Koumoutsakos, P. (2009). A Lagrangian particle method for reaction-diffusion systems on deforming surfaces, Journal of Mathematical Biology (submitted)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich CSElab

Extended domain

 Species given in narrow band around surface

- Extend concentration
 - simplifies surface growth

$$\Gamma = \{ \mathbf{x} \mid \varphi(\mathbf{x}) = 0 \},$$

$$\mathbf{n} = \nabla \varphi / \|\nabla \varphi\|$$

$$D_s
abla \cdot ((\mathbb{I} - \mathbf{n} \otimes \mathbf{n}) \nabla c)$$

$$\frac{\partial c}{\partial n} = \nabla c \cdot \mathbf{n} = 0$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich CSElab

Plant growth with Brusselator

$$X > X_{th} : \frac{\partial X/\partial t = D_X \nabla^2 X + aA - bBX + cX^2 Y - dX}{\partial Y/\partial t = D_Y \nabla^2 Y + bBX - cX^2 Y},$$
$$X \le X_{th} : \frac{\partial X/\partial t = D_X \nabla^2 X - dX}{\partial Y/\partial t = D_Y \nabla^2 Y},$$

A given as prepattern based on spherical harmonics Y_l^m ,

Initial condition based on
$$A: X_0 = \frac{aA}{d}, Y_0 = \frac{bB}{cX_0},$$

Surface growth starting at $t = t_{move}$ by $\mathbf{u} = vX\mathbf{n}$,

 $D_X, D_Y, a, bB, c, d, X_{th}, t_{move}, v$ given as parameters.

Holloway, D. M. and Harrison, L. G. (2008). Pattern selection in plants: Coupling chemical dynamics to surface growth in three dimensions, Annals Of Botany, 101(3), 361--374

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich **CSElab**

Results (stronger A)

Settings:

$$A = Y_1^0 \text{ in } [1, 16],$$
 $D_X = 0.008, D_Y = 0.16,$
 $a = 0.01, bB = 1.5,$
 $c = 1.8, d = 0.07,$
 $X_{th} = 0.035, v = 0.01,$
 $t_{move} = 20,$
Species here are growing with surface.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich RDG - Plant Growth

CSElab

Computational Science & Engineering Laboratory http://www.cse-lab.ethz.ch

Results (mass conservation)

Settings:

$$A = Y_1^0 \text{ in } [1, 16],$$
 $D_X = 0.008, D_Y = 0.16,$
 $a = 0.01, bB = 1.5,$
 $c = 1.8, d = 0.07,$
 $X_{th} = 0.035, v = 0.01,$
 $t_{move} = 20.$

Eidgenössische Technisc

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich RDG - Plant Growth

CSElab

Computational Science & Engineering Laboratory http://www.cse-lab.ethz.ch

CRANIAL VESSEL ANGIOGENESIS IN ZEBRAFISH
HTTP://ZFISH.NICHD.NIH.GOV/ZFATLAS/FLI-GFP/FLI_MOVIES.HTML

Example of Deterministic Models : Angiogenesis

Tumor-Induced Angiogenesis

A Model of Sprouting Angiogenesis

Mechanism:

endothelial cells migrate towards source of growth factors

- form cords
- proliferate
- branch / fuse

Growth factor: VEGF

exists in two forms:

- soluble
- bound to the matrix (bVEGF)

Release of bVEGF

endothelial cells secrete proteinases proteinases cleave bVEGF → soluble

Particle-mesh models for mesenchymal motion / PM4

The Cell

- confined by semipermeable membrane
- inside: cytosol (fluid) & organelles
- cell adhesion molecules on the membrane
- extends filopodia for sensing

Extracellular Matrix

- fibrous proteins
- gels of polysaccharides
- sticky scaffolding
- structural support

[1] M. SIDANI, J. WYCKOFF, C. XUE, J. E. SEGALL, AND J. CONDEELIS. PROBING THE MICROENVIRONMENT OF MAMMARY TUMORS USING MULTIPHOTON MICROSCOPY. JOURNAL OF MAMMARY GLAND BIOLOGY AND NEOPLASIA, V11(2):151–163, 2006.

Representing Cells:

About scale:

Cellular Potts

- shape optimization
- interaction energies

Cellular automaton

- intuitive
- behavioral rules
- one "cell" = one cell

Continuum

- cell density (= no individuals)
- PDEs

Continuum modeling of cells

Primary implications:

Cell density: $\rho({m x},t)$

$$\frac{\partial \rho}{\partial t} = -\nabla (\boldsymbol{u} \, \rho) + k \, \rho$$

$$\frac{\partial \rho}{\partial t} = - \frac{\partial \rho}{\partial t} = - \frac{\partial \rho}{\partial t} + k \, \rho$$
MIGRATION PROLIFERATION

Continuum cell-cell adhesion:

Existing continuum models:

SECRETION

either expensive (large radius of interaction), [1] or expensive (leading to stiff PDEs) [2]

Cell-cell adhesion as cell "signaling":

cells secrete adhesion molecules cells follow gradient of these CAMs (autocrine signal) the CAMS:

- diffuse (slow)
- decay (fast)

$$m{a}_{ ext{c2c},
ho} = \kappa \,
abla f$$
 cell-cell adhesion contribution to migration $\frac{\partial f}{\partial t} = lpha \,
ho - \mu \, f + D \, \Delta f$

DECAY

- [1] N. J. ARMSTRONG, K. J. PAINTER, AND J. A. SHERRATT. A CONTINUUM APPROACH TO MODELLING CELL-CELL ADHESION. *J. THEOR. BIOL.*, 2006.
- J. KIM. A CONTINUOUS SURFACE TENSION FORCE FORMULATION FOR DIFFUSE-INTERFACE MODELS. J. COMPUT. PHYS., 204(2):784–804, 2005.

Tuesday, September 8, 2009

DIFFUSION

The "differential adhesion hypothesis"

Cell sorting by differential adhesion

CELL **SORTING** a) VERSUS **INTERMIXING** b) IN PROSTATE CANCER [1]

$$\frac{\partial \rho_i}{\partial t} = -\nabla \cdot \left(\sum_j \boldsymbol{a}_{ij} \, \rho_i\right) + d_i \, \Delta \rho_i$$

i=1,2 CELL DENSITIES, DISCRETIZED WITH PARTICLES

$$\frac{\partial f_i}{\partial t} = -\mu_i f_i + \alpha_i \rho_i + D_i \Delta f_i$$

ARTIFICIAL CAM CONCENTRATIONS

PARTIAL ENGULFMENT

SORTING

MIXING

1] M. S. STEINBERG. DIFFERENTIAL ADHESION IN MORPHOGENESIS: A MODERN VIEW. *CURR. OPIN. GENET. DEV.*, 17(4):281–286, 2007.

Extracellular Matrix: Structure

- Material occupying the space between cells
- Fibers of structural glycoproteins
 (collagen, laminin and fibrillin are distributed throughout the ECM, occupying ~30% of the ECM)
- Collagens (the main component of the ECM cross-link with neighbouring collagens to form bundles)

FIBE

[3] M. SIDANI, J. WYCKOFF, C. XUE, J. E. SEALL, AND J. CONDEELIS. PROBING THE MICROENVIRONMENT OF MAMMARY TUMORS USING MULTIPHOTON MICROSCOPY. J. MAMMARY GLAND BIOL. NEOPLASIA, V11(2):151-163, 2006

Extracellular Matrix (ECM)

- Fibrous structures in ECM provide a guiding structure for migrating endothelial cells
- ECM fibers are subject of remodeling by migrating EC's
- The ECM expresses binding sites for various growth factors and integrins

[4] N. D. KIRKPATRICK, S. ANDREOU, J. B. HOYING, AND U. UTZINGER. LIVE IMAGING OF COLLAGEN REMODELING DURING ANGIOGENESIS. AJP HEART.. PAGES 0124.2006-,2007

Modeling the Matrix:

Model matrix explicitly:

- structure: collection of fiber bundles
- function: cell-matrix adhesion sites

Fibers:

- straight
- random direction
- distribution of lengths

$$l = l_0 2^{m z}$$
$$\alpha \in \mathcal{U}([0, \pi])$$
$$z \in \mathcal{N}(0, 1)$$

Indicator field :e

- unity where fibers present
- smoothed (implicit filopodia)

Endothelial Cell-ECM Interaction

- ullet ECM fibers provide a guiding structure $(\underline{\mathbf{T}})$ for migrating ECs
- \bullet The ECM density E_{ρ} influences migration speed
- ECM expresses binding sites for matrix-bound VEGF and fibronectin

ECM density:
$$\alpha\left(E_{\rho}\right)=\left(0+E_{\rho}\right)\left(1-E_{\rho}\right)$$

ECM direction:
$$\{\underline{\mathbf{T}}\}_{ij} = (1 - E_X)\{1\}_{ij} + E_X K_i K_j$$

Chemotaxis & cell-matrix adhesion

Opportunistic: get to growth factor (GF) source

Existing models: $a_{\phi} =
abla \phi$

PM4:

$$oldsymbol{a}_{\mathrm{ecm},\phi} =$$

$$\left[\left(1 - \left| \frac{\nabla e}{|\nabla e|} \cdot \frac{\nabla \phi}{|\nabla \phi|} \right| \right) \nabla e + \nabla \phi \right] \left(e + e_o \right) \left(\rho_{\text{cpd}} - e \right)$$

WHERE IS THE GF SOURCE?

 γ CLING TO FIBER AN ADVANTAGE?

WHERE IS THE FIBER?

FIBERS FACILITATE MIGRATION

TOO MANY FIBERS BLOCK MIG. PATH

Endothelial Cell representation

Tip Cell "deposes" endothelial cells

Hybrid representation of ECs:

Tip cell particles Q_p :

- Discrete particle representation
- Particle location: x_p
- ullet Migration acceleration: $oldsymbol{u}_p$
- ullet Drag coefficient: λ

$$rac{oldsymbol{x}_p}{\partial t} = oldsymbol{u}_p, \ rac{oldsymbol{u}_p}{\partial t} = oldsymbol{a}_p - \lambda oldsymbol{u}_p$$

Stalk cell density ρ :

- Continuum vessel representation
- Tip and stalk communicate through Particle-Mesh, Mesh-Particle interpolations

$$ho_{m{i}}^{n+1} = max \left(
ho_{m{i}}^n, \sum_p B(m{i}\,h - m{x}_p) \, Q_p
ight) \ Q_p = \sum_{m{i}} h^3 q_{m{i}} M_4' \left(m{x}_p - m{i}h
ight)$$

Tip Cell Migration

The elements of migration

cells are guided by extracellular matrix

transmembrane CAMs: integrins,...) facilitates migration

cells sense chemical gradients

gradients of "chemoattractant" serve as migratory cues

cells stick to cells

gradient of "haptotactic" molecules serve as migration cues

Migration Speed

$$\mathbf{a} = \alpha (E_{\rho}) \mathbf{\underline{T}} (w_V \nabla \Psi + w_F \nabla \Phi_b)$$

Growth Factors: Assumptions

- We model only one representative growth factor (VEGF)
- VEGF exists in a soluble and a matrix bound isoform
- Soluble VEGF is released from a tumor source
- Unbound VEGF diffuses through the ECM
- VEGF is subject to uptake by endothelial cells
- decays naturally

Soluble VEGF (sVEGF) - Assumptions

- Model: One VEGF isoform in soluble and bound state
- sVEGF establishes global chemotactic gradient
 - Tumor source modeled by boundary conditions
 - sVEGF diffuses through ECM
 - \bullet Uptake of sVEGF by endothelial cells ρ
 - Subject of natural decay

$$\frac{\partial[\text{sVEGF}]}{\partial t} = k_V \nabla^2[\text{sVEGF}] - U([\text{sVEGF}], \rho) - \delta_V[\text{sVEGF}]$$

$$U([\text{sVEGF}], \rho) = min([\text{sVEGF}], v_V \rho)$$

Matrix-bound VEGF (bVEGF)

- Some VEGF isoforms express heparin-binding sites binding to domains in the ECM
- Local gradients of matrix bound VEGF influence sprout morphology
- Matrix bound VEGF is cleaved by MMPs released at endothelial sprout tips

ONLY MATRIX-BOUND VEGF

[1] C. RUHRBERG, H. GERHARDT, M. GOLDING, R. WATSON, S. IOANNIDOU, H. FUJISAWA, C. BETSHOLTZ AND D. T. SHIMA. SPATIALLY RESTRICTED PATTERNING CUES PROVIDED BY HEPARIN-BINDING VEGF-A CONTROL BLOOD VESSEL BRANCHING MORPHOGENESIS. GENES DEV., 16(20):2684-2698, 2002.

[2] S. LEE, S. M. JILAI, G. V. NIKOLOVA, D. CARPIZO, AND M. L. IRUELA-ARISPE. PROCESSING OF VEGF-A BY MATRIX METALLOPROTEINASES REGULATES BIOAVAILABILITY AND VASCULAR PATTERNING IN TUMORS. J. CELL BIOL., V42(3):195-238, 2001

Matrix-bound VEGF - Assumptions

- Initially distributed in pockets
- establishes local chemotactic gradient
- cleaved VEGF (cVEGF) becomes soluble
 - bVEGF is cleaved by MMPs
 - Uptake of cVEGF by ECs ρ
 - cVEGF diffuses through ECM
 - cVEGF is subject to natural decay

$$\begin{split} \frac{\partial[\text{bVEGF}]}{\partial t} &= -C\left([\text{bVEGF}], [\text{MMP}]\right) - U\left([\text{bVEGF}], \rho\right) \\ &C\left([\text{bVEGF}], [\text{MMP}]\right) = min\left([\text{bVEGF}], v_{bV}[\text{MMP}][\text{bVEGF}]\right) \\ &\frac{\partial[\text{cVEGF}]}{\partial t} = k_V \nabla^2[\text{cVEGF}] + C\left([\text{bVEGF}], [\text{MMP}]\right) - U\left([\text{cVEGF}], \rho\right) - \delta_V[\text{cVEGF}] \end{split}$$

Angiogenesis: Post-dicting Experiments

Matrix-bound VEGF leads to increased branching. vessel branching ↔ capillary function

BLOOD VESSEL FORMATION IN A MOUSE MODEL

ONLY SOLUBLE VEGF > THICKER VESSELS

SOLUBLE + MATRIX-BOUND VEGF > INCREASED BRANCHING

RADIAL SOLUBLE VEGF GRADIENT AND LOCALIZED MATRIX-BOUND VEGF

new: branching is an output of the simulation

[1] S. LEE, S. M. JILANI, G. V. NIKOLOVA, D. CARPIZO, AND M. L. IRUELA-ARISPE. PROCESSING OF VEGF-A BY MATRIX METALLOPROTEINASES REGULATES BIOAVAILABILITY AND VASCULAR PATTERNING IN TUMORS. *J. CELL BIOL.*, 169(4):681–691, 2005.

MATRIX METALLOPROTEINASES

decreases local chemotactic gradients

- RELEASED BY MIGRATING TIP-QEKCS
- RELEASE BOUND BY THRESHOLD LEWEL
- DIFFUSE THROUGH ECM
- SUBJECT TO NATURAL DECAY

$$\frac{\partial [\text{MMP}]}{\partial t} = k_M \nabla^2 [\text{MMP}] + \gamma_M G(M_{th}, [\text{MMP}]) [\text{EC}] - \delta_M [\text{MMP}]$$

$$G(M_{th}, [\text{MMP}]) = M_{th} - [\text{MMP}]$$

Milde F., Bergdorf M., Koumoutsakos P., A hybrid model of sprouting angiogenesis, **Biophysical J.. 2008**

Eidgenössische Technische Hochschule Zürlc Swiss Federal Institute of Technology Zurich CSE Lab

Effect of Matrix structure on branching - Mesenchymal cells

statistics over n = 50 different matrices junctions identified with AngioQuant

What Next?

Multiscaling

Open Source Software

Mathematicians in Labs

Computer Science

PhD students: Basil BAYATI, Alvaro FOLETTI, Mattia GAZZOLA, Babak HEJAZIALHOSSEINI, Florian MILDE,

Angelos KOTSALIS, Manfred QUACK, Wim van REES, Diego ROSSINELLI, Gerardo TAURIELLO

Post-docs: Michael BERGDORF, Philippe CHATELAIN, Jens WALTHER, Ding YI

Administration: Sonja SCHLAEPFER

and: Ari Helenius, Michael Detmar (ETHZ), Urs Greber (Uni ZH), Donald McDonald (UCSF)