

Frustration and Functionality in Complex Oxides

P.G. Radaelli ISIS Facility - RAL Dept. of Physics and Astronomy, UCL

The effects of frustration: extensively degenerate GS

In general, ordering transitions and <u>greatly suppressed</u>. On cooling a frustrated system, three outcomes

are possible.

- A symmetry breaking occurs, frustration is removed and the system orders long-range.
- The system "freezes" in a glass-like state, with fnite zero-temperature entropy (ices)
- 3. A liquid-like ground state is promoted by quantum **Chippens <u>near</u>the Mott Fransitionity** fuctuations

Outline

- 1. Unusual ways to relieve orbital and magnetic degeneracy
 - AgNiO₂
 - NaMnO₂
- 2. Magneto-elastic effects: competition vs frustration.
 - J_1 - J_2 : Li_2 VoSIO₄ and VOMoO₄
 - BiMnO₃
- 3. Mechanisms of multiferroicity & functionality
 - $REMn_2O_5$

Collaborations & References

AgNiO₂

<u>E. Wawrzynska, R. Coldea</u> (Univ. of Bristol) cond-mat/0705.0668 Phys. Rev. Lett. in press (2007).

 α -NaMnO₂

M. Giot (ISIS & IESL-FORTH, Greece), L. Chapon (ISIS) and Alex Lappas (IESL-FORTH) Submitted to PRL.

> **BiMnO**₃ <u>E. Montanari, G. Calestani</u>, (Univ. of Parma) Phys. Rev. B Rapid Comm. 75, 220101 (2007).

VOMoO₄ <u>A. Bombardi (Diamond LS) and L.C. Chapon (ISIS)</u> Physical Review B **71** (2005) Art No 220406.

*REMn*₂O₅ <u>S.-W. Cheong (Rutgers) and L.C. Chapon (ISIS)</u> e.g. Physical Review Letters **96**, art. no. 097601

"Normal" situation: JT distortion

JT = Jahn Teller distortion

NaMnO₂, NaNiO₂ (LiNiO₂?^[1]) \mathbf{b}_{m} C2/m (R3m) \mathbf{a}_{m} 3.17 2.86Ă

[1] Chung JH, Proffen T, Shamoto S, et al. Local structure of LiNiO2 studied by neutron diffraction PHYSICAL REVIEW B 71 (6): Art. No. 064410 FEB 2005

NaMnO₂ – lifting of degeneracy

Direct Determination of the Magnetic Ground State in the Square Lattice S = 1/2Antiferromagnet Li₂VOSiO₄

A. Bombardi,¹ J. Rodriguez-Carvajal,² S. Di Matteo,^{3,4} F. de Bergevin,¹ L. Paolasini,¹ P. Carretta,⁵ P. Millet,⁶ and R. Caciuffo⁷

VOMoO₄: Magnetic Structure

VOMoO₄: origin of the structural anomalies

BiMnO₃ – magneto-elastic coupling

letters to nature

Magnetic control of ferroelectric polarization

T. Kimura¹*, T. Goto¹, H. Shintani¹, K. Ishizaka¹, T. Arima² & Y. Tokura¹

¹Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
²Institute of Materials Science, University of Tsukuba, Tsukuba 305-8573, Japan

Present address: Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

sinusoidal antiferromagnetic ordering. The modulated magnetic structure is accompanied by a magnetoelastically induced lattice modulation, and with the emergence of a spontaneous polarization. In the magnetic ferroelectric TbMnO₃, we found gigantic magnetoelectric and magnetocapacitance effects, which can be attributed to switching of the electric polarization induced by magnetic fields. Frustrated spin systems therefore provide a new area to search for magnetoelectric media.

The room-temperature crystal structure of TbMnO₃ investigated here is the orthorhombically distorted perovskite structure (space group *Phume* Fig. 1a). We note that the perovskite structure of

What stabilises spirals?

Other materials - $Ni_3V_2O_8$, delafossite, CuFeO₂,spinel CoCr₂O₄, MnWO₄...

S.-W. Cheong & M. Mostovoy, Nature Materials 6 13 (2007)

FE domain with spirals (TbMnO₃)

What if dipole moments already exist?

$$\mathbf{p} \propto r_{ij} \times (S_1 \times S_2)$$

Vector Coupling – Requires <u>non-</u> <u>collinearity</u>

$$\mathbf{p} = \mathbf{p}_0 \left(S_1 \cdot S_2 \right)$$

Scalar Coupling – Works with collinear spins

Direct exchange striction Superexchange striction

How to avoid cancellations Role of frustration

Through centre of symmetry

Crystal structure of REMn₂O₅

Ferroelectric Domains

•The orientation of P in the b-direction is determined by the **phase relation between chain I and II**.

•By flipping one or both chains in the magnetic structure we can obtain 4 domains

•Phase coherence *between* layers is required to have P≠0

Neutron Spherical Polarimetry

Field-cooling 25 K

Hysteresis loop – 35 K

