Toward Microscopic Understanding of Two Frustrated Antiferromagnets

Seung-Hun LeeUniversity of Virginia

Outline

- > Motivation: Quantum spin liquid states
- \triangleright Quantum spin states in $Zn_xCu_{4-x}(OD)_6Cl_2$
- > Frustrated minority spins in GeNi₂O₄
- > Summary

Collaborators

$Zn_xCu_{4-x}(OD)_6Cl_2$

H. Kikuchi, Univ. of Fukui, Japan

Y. Qiu, Q. Huang, NIST, USA

B. Lake, K. Habicht, K. Kiefer, HMI, Germany

GeNi₂O₄

M. Matsuda, K. Kakurai, JAEA, Japan

J.-H. Chung, NIST, USA, now at Korea U, Korea

S. Park, KAERI, Korea

T. J. Sato, K. Matsuno, H, Takagi, U of Tokyo, Japan

H. Aruga Katori, RIKEN, Japan

K. Kamazawa, Y. Tsunoda, I. Kagomiya, Waseda U, Japan

C. L. Henley, Cornell U

Quantum kagome antiferromagnet

$$Zn_xCu_{4-x}(OD)_6Cl_2(S=1/2)$$

ZnCu₃(OD)₆Cl₂:A perfect kagome system???

M.P. Shores/G. Nocera et al., JACS (2005)

Cu₄(OD)₆Cl₂: a pyrochlore system?

ZnCu₄(OD)₆Cl₂: Crystal Structure

S.-H. Lee *et al.*, Nature Materials (2007) supplementary information

Rhombohedral, R-3m

						_
Atom	Site	fraction	X	у	Z	
Cu1	3b	0.3723	0	0	1/2	
Cu2	9e	0.8927	Kago	me lati	tice.	
Zn1	3b	0.6277				
Zn2	9e	0.1073	magn	etically	90%	tilled
CI	6c	1	0	0	0.195773	
0	36i	1	0.206226	0.412451	0.061618	
D	36i	0.9935	0.131562	0.263119	0.090799	

Cu₄(OD)₆Cl₂: superexchange paths

- Jahn-Teller distortion around the doped Cu²⁺ ion
- Bond angle of Cu^{2+} - O^{2-} - Cu^{2+} > 110° between kagome spins: strong AFM J in the kagome layer
- Bond angles of Cu^{2+} - O^{2-} - Cu^{2+} < 100° between kagome and triangular spins: weak coupling between kagome and triangular layers
- In kagome layer, two bonds with different bond angles and lengths

Weakly coupled **distorted** kagome system

Phase Diagram of $Zn_xCu_{4-x}(OD)_6Cl_2$

Cu₄(OD)₆Cl₂: Phase Transitions at Low Temperatures

- -Two transitions at ~ 18 K and ~ 6 K.
- From μ SR data, they interpreted the 18K transition involves a long range order.
- At 6K, it transits to a metastable state with strong fluctuations.
- But.. the entropy released at 18 K is only 0.05 Rln2/Cu, surprisingly small for a Neel ordering (SRln2/Cu).
- The large amount of entropy is released at 6 K.

Cu₄(OD)₆Cl₂: Elastic neutron scattering and Neel state

S.-H. Lee et al., Nature Materials (2007)

- Neel ordering occurs at ~ 7 K.
- $-Q_{M} = (001).$
- consistent with the specific heat data that showed the large amount of entropy was released around 6K.

- The Neel state is collinear, rather than 120 degree configuration.

Collinear

VS

120° configuration

$$E (coll) = 4 J_2 - 8 J_1$$

$$E (120^{\circ}) = -2 J_2 - 4 J_1$$

E (coll) < E (120°)
$$J_2 < 2/3 J_1$$

- If we take Goodenough's prediction, $J \sim \cos^4\theta/d^7$, $J_2 \sim 1/3$ J_1 for $Cu_4(OD)_6Cl_2$.

Cu₄(OD)₆Cl₂: Phase Transitions at Low Temperatures

- The 7 meV mode survives well above 7K, gradually diminishes around 20K, coincides with the 18K transition in the Cv.
- The energy of the 7 meV mode does not change with T

- Two excitations at 1.5K at 1.3 meV and 7 meV.
- With warming, the 1.3meV mode shifts to lower energies and above the Neel transition, it becomes quasielastic continuum.

Cu₄(OD)₆Cl₂: Q-dependence of the magnetic fluctuations

Summary on Cu₄(OD)₆Cl₂

- Specific heat: two transitions at ~ 18 K and ~ 6 K.
- Their interpretation of the μ SR data:
 - The 18K transition: LRO
 - The 6K transition is to a metastable state with strong fluctuations.
- But.. the entropy released at 18 K is only 0.05 Rln2/Cu << SRln2/Cu.
- The large amount of entropy is released at 6 K.
- Elastic neutron scattering:
 - LRO occurs below $T_N \sim 7K$.
 - No evidence for another LRO above T_N.
- Inelastic neutron scattering:
 - The energy of spin waves shifts from 1.3 meV at 1.5K to lower energies as T increases to T_N , and it becomes a gapless continuum.
 - The 2nd excitation mode at 7 meV gradually weakens and disappears ~20K.
 - The energy of the 7 meV mode does not shift with increasing T.
 - S(Q,hw=7meV) resembles that of spin dimers.
 - Above 20K, S(Q) at low energies resembles that of spin dimers.

$Cu_4(OD)_6Cl_2$

Zn doping effects on

 $Zn_xCu_{4-x}(OD)_6Cl_2$

$Zn_xCu_{4-x}(OD)_6Cl_2$: Spin Fluctuations with x

$Zn_xCu_{4-x}(OD)_6Cl_2$: Spin correlations vs x

Elastic scattering at 1.5 K

- The Neel state weakens upon Zn doping.
- It disappears just above x = 0.4.

Inelastic scattering at 1.5 K

- The $h\omega_0$ = 7 meV mode disappears at x ~ 0.4.
- The $h\omega_1$ = 1.3 meV mode weakens and shifts to low energies with x.
- The energy excitation spectrum becomes a featureless continuum for x > 0.4.

Summary: Phase Diagram of Zn_xCu_{4-x}(OD)₆Cl₂

$Zn_xCu_{4-x}(OD)_6Cl_2$: Spin Fluctuations vs x

$Zn_xCu_{4-x}(OD)_6Cl_2$ (x > 0.66): Magnetic field effects on spin fluctuations

No evidence for any field induced static ordering.

ZnCu₃(OD)₆Cl₂: Characteristics of Spin Fluctuations

- Featureless in energy and in momentum
- Under H, E (meV) = $g\mu_BH$
- For x = 1, 10% of Cu^{2+} ions at triangular sites.
- Are those free spins responsible for the spin fluctuations in the x = 1 system?
- Assuming that all Cu²⁺ ions contribute to the observed intensity,

$$\int_{0.2 \, meV}^{1.7 \, meV} I(\hbar \omega) d(\hbar \omega) = 0.11(3) \, / \, \text{Cu}^{2+}$$

whereas if only the 10% free spins contribute,

$$\int_{0.2 \, meV}^{1.7 \, meV} I(\hbar \omega) d(\hbar \omega) = 1.1(3) / \text{Cu}^{2+}$$
>S(S+1) / Cu²⁺ = 0.75 / Cu²⁺

- As x increases, the spin fluctuations gradually shifts from the collective spin waves of x = 1 to the low energy continuum of x = 0.

We conclude that the low energy continuum of ZnCu₃(OD)₆Cl₂ is due to collective excitations of kagome Cu²⁺ ions.

Summary: Phase Diagram of Zn_xCu_{4-x}(OD)₆Cl₂

Scenarios for Cu₄(OD)₆Cl₂

- Scenario I

- The spin wave gap is proportional to the frozen moment.
- The 7 meV energy does not shift with increasing T.

- Scenario II

Spinel AB₂O₄: Crystal Structure

- At high temperature, Fd3m, cubic a=6.1637A, b=6.8166, c=9.114A α = β = γ =90°
- AO₄ tetrahedra
- BO₆ Octahedra
- The octahedra are edge sharing
- B ions form a pyrochlore lattice

From Takagi's talk '06

Transition Metal ${f M}$	= Ti	\mathbf{V}	Cr	Mn
	$d^{0.5}$	d ^{1.5}	$d^{2.5}$	$d^{3.5}$
$Li^{1+}M_2^{3.5+}O_4$				
	LiTi ₂ O ₄	LiV ₂ O ₄	$(LiCr_2O_4)$	LiMn ₂ O ₄
"Charge" frustration 1:1 3+ & 4+, mixed valent	BCS SC	Heavy Fermion		
$Zn^{2+}M_2^{3+}O_4$	\mathbf{d}^1	$\frac{d^2}{d^2}$	$\frac{\mathbf{d}^3}{\mathbf{d}^3}$	d^4
$(Mg^{2+}, Cd^{2+}, Hg^{2+})$		ZnV ₂ O ₄	ZnCr ₂ O ₄	
Mott insulator	MgTi ₂ O ₄	MgV_2O_4	\setminus CdCr ₂ O ₄	ZnMn ₂ O ₄
"Spin" frustration		CdV ₂ O ₄	HgCr ₂ O ₄	MnMn ₂ O ₄
all 3+, AF interactions	I	MnV ₂ O ₄	CoCr ₂ O ₄	
		orbit spine	in liquid al degeneracy spin Peteris irans od hit lattice com id-induced platea	sition ling I states

S = 1 pyrochlore AFM with orbital degrees of freedom: AV_2O_4 (A = Zn, Cd)

Additional ingredient: orbital degrees of freedom

50 ⊺ (K)

0

$$V^{3+}(d^2, S=1)$$

100

Effect of the A²⁺-ion on orbital ordering in AV₂O₄

SHL et al., PRL (2004) Zhang/Louca/SHL et al., PRB (2006)

A Spinel with eg electrons

$$GeNi_2O_4$$
 (S=I)

GeNi₂O₄: An S=I spinel

Takagi's group, unpublished (2002) M.K. Crawford et al., PRB (2003)

T(K)

Ni²⁺ (3d⁸): no orbital degeneracy

- $-\Theta_{CW} = -4.4 \text{ K}$
- Two transitions at 12.1 K and 11.4 K
- No structural transition
- The two transitions are purely magnetic
- $T_N > |\Theta_{CW}|$: AFM and FM Js

GeNi₂O₄: Neutron diffraction from a single crystal

M. Matsuda et al., cond-mat/0708.3162 (2007)

planes

- I(1/2,1/2,1/2) / I(1/2,1/2,-3/2) is different in the two phases
- The two phases have different magnetic structures

GeNi₂O₄: Magnetic structures of the two phases

M. Matsuda et al., cond-mat/0708.3162 (2007)

- In phase I, only kagome spins are ordered with <M $> = 1.3 <math>\mu_B$

- In phase II, kagome and triangular spins are ordered with <M $> = 1.8 <math>\mu_B$
- kagome and triangular spins lie on the| > plane

Spinels AB_2O_4 with B = 3d transition metal ions

Electronic states vs Magnetism

lie between the ligand axes

B-B direct overlap
--> AFM NN J

GeNi₂O₄: The origin of the two magnetic phase transitions

Superexchange interactions that involve one to two superexchange steps

J	d	Path	θ	n_B	Z_K	Z_T
J_1	$\sqrt{2}$	BOB	90°	2		6 (K)
J_2	$\sqrt{6}$	BOAOB	$125^{\circ}, 125^{\circ}$	1	4 (I), 4 (K), 4 (T)	12 (K)
		BOBOB	90°, 90°	4		
J_3	$\sqrt{8}$	BOAOB	$125^\circ,125^\circ$	2	2 (I), 4 (K)	6 (I)
J_3'	$\sqrt{8}$	BOBOB	90°, 90°	4	4 (I), 2 (K)	6 (T)
J_4	$\sqrt{10}$	BOAOB	$125^{\circ}, 125^{\circ}$	1	8 (K), 4 (T)	12 (K)

Mean-field energy for the observed (1/2,1/2,1/2) structure

$$E_{\text{kag}} = 2J_1 - J_3 + J_3' - 4J_4;$$

 $E_{\text{tri}} = 3J_3 - 3J_3',$

$$E_{\text{tot}} = \frac{3}{4}E_{\text{kag}} + \frac{1}{4}E_{\text{tri}} = \frac{3}{2}J_1 - 3J_4$$

Mean-field energy for (1,0,0) and (1,1,0) structures

$$E_{\text{tot}}^* = -J_3 - J_3' + 3J_6 \pm |J_1 - 2J_2 + 2J_4|$$

$$E_{\text{tot}} < E_{\text{tot}}^*$$

$$E_{
m tot} < E_{
m tot}^*$$
 $J_4 > rac{5}{2}J_1 - 2J_2 + J_3 + J_3'$:AFM J_4 , FM J_1

Consistent with the Goodenough-Kanamori rules for GeNi₂O₄

Average total E due to J_4 per spin = $3*(-8 J_4)/4 = -6 J_4$

GeNi₂O₄: The origin of the two magnetic phase transitions

Mean-field energy for kagome and triangular spins

$$E_{\text{kag}} = 2J_1 - J_3 + J_3' - 4J_4;$$
 $E_{\text{tri}} = 3J_3 - 3J_3',$
 $k_B T_{N1} = \frac{2}{3} |E_{\text{kag}}|$
 $k_B T_{N2} = \frac{2}{3} |E_{\text{tri}}|$

$$k_B T_{N2} \lesssim k_B T_{N1}$$
 $J_4 - J_1/2 \gtrsim J_3' - J_3$

 $J'_3 > J_3$; J'_3 may be antiferromagnetic and J_3 ferromagnetic consistent with the Goodenough-Kanamori rules?

J	d	Path	θ	n_B	Z_K	Z_T
J_1	$\sqrt{2}$	BOB	90°	2	4 (I), 2 (T)	6 (K)
J_2	$\sqrt{6}$	BOAOB	$125^{\circ}, 125^{\circ}$	1	4 (I), 4 (K), 4 (T)	12 (K)
		BOBOB	90°, 90°	4		
J_3	$\sqrt{8}$	BOAOB	$125^\circ,125^\circ$	2	2 (I), 4 (K)	6 (I)
J_3'	$\sqrt{8}$	BOBOB	90°, 90°	4	4 (I), 2 (K)	6 (T)
J_4	$\sqrt{10}$	BOAOB	$125^\circ,125^\circ$	1	8 (K), 4 (T)	12 (K)

Summary

GeNi₂O₄

- The two magnetic phase transitions are due to the existence of two types of spins for a given k: majority kagome and minority triangular spins.
- \triangleright At 12.1K, kagome spins order due to AFM J_4 interactions.
- \triangleright At 11.4K, triangular spins order. Exchange theory containing only Js calls for AFM J_3 and FM J_3 , which is not consistent with the Goodenough-Kanamori rules.