Orbital correlations in doped manganites

Jessica Thomas ${ }^{1,2}$

1. Nature Publishing Group
2. Brookhaven National Lab, Department of Condensed Matter and Materials Science

Outline

- The questions that motivate the experiments (and the experiments that motivate the questions)
- Resonant x-ray scattering
- Direct comparison of orbital and magnetic order
- The oxygen contribution to orbital order
- Orbital domain dynamics
- Summary of open questions

Cubic Perovskite Manganites

$R E_{1-x} A_{x} \mathrm{MnO}_{3}\left(\right.$ e.g. $\left.\mathrm{La}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{MnO}_{3}\right)$
$(1-x) \mathrm{RE}^{3+}+x \mathrm{~A}^{2+}+\mathrm{Mn}^{v}+3\left(\mathrm{O}^{2-}\right)=\mathbf{0}$
$V=3+x$

Jahn-Teller effect and orbital ordering

Phase diagrams of two different manganites

Important questions

- Are sublattices separated by unit valence?
- What drives charge/orbital order?
- Dynamics associated with orbital order?
- Coupling between orbital and magnetic correlations?

Resonant x-ray scattering

Orbital order in the a-b plane

$\boldsymbol{f}_{\text {res ion }} \sim \frac{\sum_{n}<i|\varepsilon| n><n|\varepsilon| i>}{E-E_{\text {res }}+\Gamma / 2}$

- Mn^{4+}, spin up

$$
\mathbf{Q}_{\mathbf{A F}}=\left(\begin{array}{lll}
1 / 2 & 0 & 0
\end{array}\right)
$$

Mn^{3+}, spin down
$f_{i o n}=f(Q)+f^{\prime}(E)+$
fi'"(E)
Bragg peak intensity $=\left|\Sigma \mathrm{f}_{\text {ion }} \mathrm{e}^{\mathrm{e}(\mathrm{Q} \cdot \mathrm{r})}\right|^{2}$

Mn absorption edges

K-edge (1s to 4p)

L-edge (2p to 3d)

C. Castleton and M. Altarelli, Phys. Rev. B 621033 (2000)

Direct comparison of orbital and magnetic superlattice reflections

Temperature dependence

Orbital order correlated over a shorter length scale than magnetic order
K. J. Thomas, J. Hill, S. Grenier, P. Abbamonte, M. v. Veenendaal, G. Sawatzky et al. PRL 92, 237204 (2004).

Magnetic and orbital resonant line shapes: direct comparison

K. J. Thomas et al. PRL 92, 237204 (2004).

Pure orbital scattering

- Understanding the line shape associated with orbital order
- The role of oxygen
- What sets the length scale for the orbital domains?

Characteristic orbital scattering in half-doped manganites

- Similarity of spectra suggest a "thumbprint" on orbital order
- Improve calculations
to isolate features
in the spectra (crystal field and hybridization effects)

Understanding the line shape associated with orbital order

Explain difference between magnetic and orbital lineshapes
(K. J. Thomas et al. PRL 92, 237204 (2004))

$\operatorname{Pr}_{0.6} \mathrm{Ca}_{0.4} \mathrm{MnO}_{3}$

Treat contribution from oxygen sites and role of spin exchange
A. Mirone et al., The European

Physical Journal B 53, 23-28 (2006).

Explain the change in the OO diffraction spectrum below T_{N} and parametrize the JT distortion (C. W. M. Castleton and M. Altarelli, PRB 62, 1033 (2000); S. B. Wilkins et al. PRB, 71245102 (2005))

Oxygen contribution to orbital order

- Figure out where the charge is sitting and the degree of hybridization between the metal $3 d$ and oxygen $2 p$
- Separate 'electronic' and 'structural' contributions to the orbital order

O K-edge (540 eV) probes $2 p$ unoccupied states (hybridization with Mn 3d)
$\mathrm{Bi}_{0.31} \mathrm{Ca}_{0.69} \mathrm{MnO}_{3}$ (~ 2 holes per 3 Mn sites)

$$
Q_{\mathrm{OO}}=(0,0.31,0)
$$

S. Grenier et al. PRB 75, 085101 (2007)

Confirms 'Wigner crystal' mode with K-edge resonant diffraction

Orbital order diffraction peak in $\mathrm{Bi}_{0.31} \mathrm{Ca}_{0.69} \mathrm{MnO}_{3}$ at the O K-edge and Mn L-edge

S. Grenier et al. arXiv:0707.4388v1

Temperature dependence at the Mn and O edges

What sets the orbital domain size?

- Correlation length appears to be half that of the magnetic state
- But, it is still large, suggesting it is limited by a macroscopic 'field' (disorder, strain)
- 100-300 \AA appears to be a general result (i.e. not about the sample)

Track OO domain dynamics with coherent x-rays

Orbitals are essentially static

$$
\operatorname{Pr}_{0.5} \mathrm{Ca}_{0.5} \mathrm{MnO}_{3}
$$

$\mathrm{T}=\mathrm{T}_{\mathrm{OO}}-17 \mathrm{~K}$

Speckle of the ($01 / 20$) OO diffraction peak

Time evolution of a vertical slice through the speckle

Coherent scattering:

But, there is a small fluctuating component

Cross-correlation coefficient maps

J. Turner et al. (submitted)

Summary of open problems

- General model to explain the resonant diffraction curves
- On the basis of the OO diffraction peaks at the O and Mn absorption edges, can the hole concentration on the oxygen sites/hybridization be calculated?
- What do the slow dynamics of the OO domains tell us about how domain walls form and what pins them?

Collaborators

John Hill Brookhaven National Lab Wei Ku BNL
Dmitri Volja BNL

Stephane Grenier CNRS, Grenoble Urs Staub Swiss Light Source PSI
V. Kiryukhin Rutgers University

Karine Chesnel LNCMP, Toulouse Steve Kevan The University of Oregon Josh Turner The University of Oregon Mark Pfeifer La Trobe University, Australia

Peter Abbamonte University of Illinois, Urbana-Champaign
Andrivo Rusydi University of Hamburg
Serban Smadici UIUC/BNL
Y. Tokura University of Tokyo, Japan
Y. Tomioka AIST, Japan

George Sawatzky University of British Columbia
Michel van Veendendaal Argonne National Lab

