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|. Single-level selection models
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More black balls in “White” jar than white balls in “Black” jar?
Or vice versa!
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“Black” “White”

Easy explanation:
After exchange, same amount of balls in both jars




Public Goods Game (the mother of all cooperation models)

C (Cooperator): contributes b to public good at cost c (b > ¢ > 0)

D (Defector): contributes 0 at no cost

Interaction group with N individuals: k Cooperators, N-k Defectors

k - b = public good produced; distributed equally among all group members, each gets (k - b)/N
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Public Goods Game (the mother of all cooperation models)

o C (Cooperator): contributes b to public good at cost ¢ (b > ¢ > 0)

o D (Defector): contributes 0 at no cost

e Interaction group with N individuals: k Cooperators, N-k Defectors

e k-b = public good produced; distributed equally among all group members, each gets (k - b)/N

Payoff structure within a given interaction group:

Payoff from
Strategy Payoff from “self” Total payoff
“interaction environment”
C b/N - ¢ (k-1)b/N kb/N - ¢
D 0 kb/N kb/N

~

v

Within any given interaction group, C always does worse than
(even with “weak altruism”, b/N - ¢ > 0)
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Population-wide payoffs: average payoff from many different interaction groups

e e, = # cooperators among N-| other members of an average interaction group of focal C

(average interaction environment of a focal C)

e ep = # cooperators among N-| other members of an average interaction group of focal D

(average interaction environment of a focal D)

Payoff from average

Strategy Payoff from self . . _ Total payoff
interaction environment
C b/N - ¢ ecb/N (ect 1)b/N-c
D 0 eDb/N eDb/N
o cN
C wins if: e(;—l—(l——) > ep «

b




ec = # cooperators among N-| other members of an average interaction group of focal C

ep = # cooperators among N-| other members of an average interaction group of focal D

condition for the evolution of cooperation:

cN
e(;—|—(1—7)>ep

Strong altruism (b/N - ¢ < 0) requires e. > e

Cooperators must have a more cooperative interaction environment than defectors:
assortment among cooperators
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Example:
Random interactions (random formation of interaction groups):

ec = ep = x - (N-1), where x = frequency of C in the population

cN
Evolution of cooperation requires: ec + (1 — —) > ep = ec

b

C wins if and only if b/N - ¢ > 0 (“weak altruism”)

Note: weak altruism is not enough in general if there is negative assortment (e < ep)
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Chuang et al,“Simpson’s Paradox in a Synthetic Microbial System” Science, 2009

Iwo E. coli strains:
- strain A secretes inducer of antibiotic resistance (at a cost); inducer = public good

- strain B doesn’t produce inducer

Public goods game:
when growing together in media containing antibiotics, strain B outcompetes strain A
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Experimental evolution:

- common pool of A and B strongly diluted and distributed in many different wells

- growth, then pooling of all well populations, etc
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Experimental evolution:
- common pool of A and B strongly diluted and distributed in many different wells

- growth, then pooling of all well populations, etc

dilute dilute
I ! B !
O A D D ) growth/pool  Becesme. () LD a
= BB

Result: evolution of cooperation (producers increase in pooled frequency)

multiple rounds at /

B

from Chuang et al, Science, 2009




“Complicated” explanation: Simpson’s paradox

GLOBAL POPULATION SUBPOPULATIONS

p 0.50 P; 0.75 0.50 0.25

o
f

Simpson's Paradox:
Ap >0 even though s
Ap; <0 forall

Ap >0

\

Z w e e s i T e e e e e
/ '
p' g P; 0.70 0.45 0.20
W, 4.5 3 1.5
p — initial global proportion of P p; — initial proportion of P in group /
p' — final global proportion of P p;” — final proportion of P in group i
Ap — change in global proportion of P Ap; — change in proportion of P in group i
ie. Ap=p'-p Le. Ap, — p," “P;
n — number of subpopulations w; — growth of group /

from Chuang et al, Science, 2009
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“Complicated” explanation: Simpson’s paradox

GLOBAL POPULATION

P 0.50

| Simpson's Paradox: _
\p >0 even though Ap;<0
| Ap; <0 forall i

SUBPOPULATIONS

P;

L
. n
Ap>0
p'= _Z w; * p;
pX w;
p' 0.533 o
p — initial global proportion of P

p' — final global proportion of P

Ap — change in global proportion of P
ie. Ap=p'-p

n — number of subpopulations

p; 0.70 0.45 0.20

W, 4.5 3 1.5
pP; — initial proportion of P in group i
p,/ — final proportion of P in group i
Ap; — change in proportion of P in group i
le. Ap,=p, - p;

w, — growth of group /

from Chuang et al, Science, 2009

Easy explanation: random interaction groups, weak altruism
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1.

ec = # cooperators among N-| other members of an average interaction group of focal C

ep = # cooperators among N-|1 other members of an average interaction group of focal D

cN
condition for the evolution of cooperation: ex + (1 — —) > ep

b

Examples related to “group selection:

Every interaction group contains exactly k cooperators (no variation between groups):

eczk-l
ep = k

C never wins...
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ec = # cooperators among N-| other members of an average interaction group of focal C

ep = # cooperators among N-|1 other members of an average interaction group of focal D

cN
condition for the evolution of cooperation: ex + (1 — —) > ep

b

Examples related to “group selection:

1. Every interaction group contains exactly k cooperators (no variation between groups):
€c — k - |
ep = k

C never wins...

2. Only two types of interaction groups: all cooperators, or all defectors (maximal group variation):
€c — N - |
ep =0

C always wins...

13
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cN
condition for the evolution of cooperation: ec + (1 — —

b

Relation to kin selection:‘ “Hamilton’s rule”

(6c-|-1—6D
N

)b > c

“average excess relatedness” among C players

)>6D
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Maintenance of cooperation in the Spatial Prisoner’s Dilemma (cluster formation)

Nowak and May, Nature, 1992

Example from Ackermann et al, Nature, 2008
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Mechanisms for assortment (ec > ep): Spatial structure

* Maintenance of cooperation in the Spatial Prisoner’s Dilemma (cluster formation)
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Nowak and May, Nature, 1992

* Example from Ackermann et al, Nature, 2008
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Phenotypic noise in Salmonella typhimurium
green: isogenic cells expressing virulence factor

grey: isogenic cells not expressing virulence factor

Nikki Freed, Ackermann lab, ETHZ
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Phenotypic noise in Salmonella typhimurium
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Phenotypic noise in Salmonella typhimurium

TTSS-1- remains in lumen

TTSS-17* migrates to gut wall

#TTSS-17 in gut wall correlates

with inflammation (public good)
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Phenotypic noise in Salmonella typhimurium

TTSS-1- remains in lumen

TTSS-17* migrates to gut wall

#TTSS-17 in gut wall correlates

with inflammation (public good)

TTSS-1% in gut wall commit suicide
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S. typhimurium public goods game

single deme (single host) is seeded by M individuals, deme grows to population size N

public goods game in each deme: D does nothing; with probability g, C commits suicide to
provide benefit b

payoffs in deme with k cooperators:

18



Spatial structure:
deme seeded by M individuals from global pool

Average interaction environment of focal C:

N N
=x(M —1 — 1
coe) =o(M—1)7+
x = global frequency of C
N
ep(xr) =x(M — 1)M
x = global frequency of C
N
Note: ec(x) —ep(x)=——1>0

M
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S. typhimurium public goods game

single deme (single host) is seeded by M individuals, deme grows to population size N

public goods game in each deme: D does nothing ; with probability q, C commits suicide to
provide benefit b

payoffs in average interaction deme:

Pe = (1 —q)((ec(x)gb+ w) Pp =ep(z)gb+w

0.8 -l\ i

; \
> invades |

Cc

C
invades
D

__qz*j
\ Convergent

stable

\\ ESS

from Ackermann et al, Nature, 2008




Adaptive dynamics: competition between different
suicidal strategies gres and gmu

Average payoff to rare gmut:

N
quut — (1 o Qmut) Qmutb(ﬂ — 1) + qresb

ques — (1 o QT’GS) [QTesb(N o 1)]

(M —1)N

M
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S. typhimurium public goods game

single deme (single host) is seeded by M individuals, deme grows to population size N

public goods game in each deme: D does nothing ; with probability q, C commits suicide to
provide benefit b

payoffs in average interaction deme:

Pe = (1 —q)((ec(x)gb+ w) Pp =ep(z)gb+w

0.8 J\ )

: l
> invades _

C
invades
D

from Ackermann et al, Nature, 2008
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Mechanisms for assortment : Conditional behaviour

Example (from Fletcher and Zwick 2007): Tit-for-Tat in the Iterated Prisoner’s Dilemma
x = frequency of TFT, |-x = frequency of AlID, N iterations
interaction environment of TFT player: xN cooperative acts

interaction environment of AlID player: x cooperative acts
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Mechanisms for assortment : Conditional behaviour

Example (from Fletcher and Zwick 2007): Tit-for-Tat in the Iterated Prisoner’s Dilemma
x = frequency of TFT, |-x = frequency of AlID, N iterations
interaction environment of TFT player: xN cooperative acts

interaction environment of AlID player: x cooperative acts

Tit-for-Tat generates assortment between cooperators and cooperative behaviours of others

23



Conclusions for single-level selection models:

* Evolution of cooperation requires different interaction environments for cooperators
and defectors (positive assortment between cooperative genotypes and cooperative

behaviour of others) Note: equally applies to interspecific mutualism
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Conclusions for single-level selection models:

* Evolution of cooperation requires different interaction environments for cooperators
and defectors (positive assortment between cooperative genotypes and cooperative

behaviour of others) Note: equally applies to interspecific mutualism

e The concepts of kin selection (Hamilton’s rule) and group selection (Price equation)
are not necessary for understanding the evolution of cooperation; they are merely

different fitness accounting techniques.

* The biological problem: understanding the mechanisms that lead to

assortment (spatial structure, conditional behaviour, ...)

24



2. Multi-level selection models

Traditional group selection models:

* Group properties derived from properties of the individuals in a group (e.g.
“productivity”’=average individual fitness)

* Price equation: essentially a type of accounting of individual fitness
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2. Multi-level selection models

Traditional group selection models:

* Group properties derived from properties of the individuals in a group (e.g.
“productivity”’=average individual fitness)

* Price equation: essentially a type of accounting of individual fitness

“True” group selection models:
* Need birth-death process at both the individual and the group level
e Basic assumption: population consists of “groups of individuals” (e.g. groups of

individual pathogens defined as those living in a single host; tribes of hunter-
gatherers,...)

25



A generic group selection model

Individuals can have types {1,2,...k}

A group is specified by a vector = = (x1,...,T)

x; = number of ¢ — individuals in the group

Basic quantity:

O(xz,t) = number of x — groups in the population at time ¢

eg. G(t) = /@(x,t)d:c — number groups at time ¢

N;(t) = /:UZ-@(:C, t)dr = number of type ¢ individuals at time ¢

Goal: understand the dynamics of O(z, 1)

26



Individual-level events: birth, death (and migration) of individuals

bi (CIJ, t)
di(CIZ, t)

birth rate of ¢ individuals in groups of composition x

death rate of 7 individuals in groups of composition x

Group level events: fissioning and extinction of groups (and possibly fusion)
f(z,t) = fissioning rate of x groups

h(u,x) = fissioning density: distribution of groups formed

when an x group is fissioning

e(x,t) = extinction rate of x groups

Note:

* all rates can be affected by interactions, group composition, total number of
individuals and groups, etc.

* fissioning and extinction rates of groups can be affected by games between groups
(e.g.in cultural evolution)

27



“Master equation” for group selection:

— (e(x,t) + f(x,1))O(x, )

dynamics due individual level events dynamics due to group level events

Definition: A trait evolves by group selection if it establishes itself when
group-level events are present in the model, and does not establish itself in the

same model when they are absent.
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Example: evolution of cooperation in hunter-gatherer tribes

Figure 1a
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http://www.youtube.com/watch?v=87UAHkCK1qQ&feature=plcp
http://www.youtube.com/watch?v=87UAHkCK1qQ&feature=plcp
http://www.youtube.com/watch?v=EBW41K3xw0I&feature=youtu.be
http://www.youtube.com/watch?v=EBW41K3xw0I&feature=youtu.be

number of individuals

Example: evolution of “multicelluarity” (sticky cells)

Basic assumptions:

* Two kinds of cells:“sticky” and “normal”

* Groups =“organisms’ consisting of a number of sticky and normal cells
* Normal cells reproduce at a faster rate than sticky cells

e Stickier organisms are less likely to fission and more likely to fuse

* Smaller organisms are more likely to be eaten by predators

equilibrium configuration
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Example: evolution of cooperation in groups playing
public goods games

Basic assumptions:

* Groups consist of Cooperators and Defectors

* Individual birth rates are given by payoffs from public goods game
(logistic death rates)

* Larger groups and groups with larger proportions of Cooperators are
less likely to go extinct

* Groups with larger proportions of Defectors cooperators are more

likely to fission
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Assortment (or relatedness) are instantaneous measures that can only predict short
term dynamics

Dynamics of assortment (or relatedness) are determined by group level events and
are needed to predict long-term dynamics

2500 I I T I I
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500 | | | | |
0 100 200 300 400 500 600

time C(t) = cooperators at time t
D(t) = defectors at time t

| | | | |
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Summary

Single-level selection modeils:

* Evolution of cooperation requires different interaction environments for

cooperators and defectors (positive assortment between cooperative genotypes and
cooperative behaviour of others)

* The concepts of kin and group selection are not necessary for understanding the
evolution of cooperation

* The biological problem is to understand the mechanisms that lead to assortment
(spatial structure, conditional behaviour, ...)
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Summary

Single-level selection modeils:

* Evolution of cooperation requires different interaction environments for
cooperators and defectors (positive assortment between cooperative genotypes and

cooperative behaviour of others)

* The concepts of kin and group selection are not necessary for understanding the

evolution of cooperation

* The biological problem is to understand the mechanisms that lead to assortment

(spatial structure, conditional behaviour, ...)

Multi-level selection models:

* Require birth and death processes at multiple levels (e.g. at the individual and at the

group level)

* In such models, events that affect birth and death rates at the group level must be
taken into account, e.g to understand the dynamics of assortment

* However, assortment at the individual level is in general not enough to understand
the dynamics cooperation in multi-level models (e.g. when there are games between

groups)
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