Beyond germ/soma: the evolution of many cell types

Kirk & Kirk 2004

ER Hanschen & RE Michod

February 6th, 2013

KITP Cooperation and the Major Evolutionary Transitions

Evolution of Division of Labor

Feature of evolutionary transitions such as multicellularity

(Michod 2006, Michod 2007)

Functional integration and fitness decoupling

Evolution of Division of Labor

Feature of evolutionary transitions such as multicellularity

(Michod 2006, Michod 2007)

- Functional integration and fitness decoupling
- Many recent models assume two selection pressures and study evolution of two types

Michod 2006

Willensdorfer 2008

Willensdorfer 2009

Gavrilets 2010

Ispolatov et al. 2011

Rueffler et al. 2012

Evolution of Division of Labor

Feature of evolutionary transitions such as multicellularity

(Michod 2006, Michod 2007)

- Functional integration and fitness decoupling
- Many recent models assume two selection pressures and study evolution of two types
- General themes:
 - proportion of each cell type
 - shape of cell level tradeoffs
 - fitness landscape shape

Cell type isn't limited to two...

Clearly many species have many cell types

 Previous work on the evolution of division of labor doesn't clearly generalize to 3+ cell

Arabidopsis thaliana

Homo sapiens

Cell type isn't limited to two...

- Clearly many species have many cell types
- Previous work on the evolution of division of labor doesn't clearly generalize to 3+ cell types
- Remaining general questions:
 - Shape of the multi-dimensional fitness landscape
 - Optimal cell type proportions
 - Under what conditions does germ/soma diversify?

Volvocine algae model

Volvox carteri

Kirk & Kirk 2004

Germ (large) and soma (small) are response to reproduction/survival trade off

Spatial pattern of cell types

Volvox carteri life cycle

Volvox carteri life cycle

Volvox rousseletii

McCracken & Starr 1970

Volvocine algae with 3 cell types

- Small soma cells
- Large germ cells
- Medium cells

Volvox rousseletii

McCracken & Starr 1970

Volvox rousseletii life cycle

Volvox rousseletii life cycle

Volvox rousseletii

McCracken & Starr 1970

3 cell types differentiated by:

- size
- spatial orientation

3rd cell type may be adaptation to asexual/sexual trade off

Asexual/sexual development thought to depend on environmental conditions

Project Proposal

McCracken & Starr 1970

V. rousseletii transcriptomes

 Look for regulatory differences between cell types

Project Proposal

McCracken & Starr 1970

V. rousseletii transcriptomes

 Look for regulatory differences between cell types

Life history modeling

 How environmental variation (sex/asex) selects for three cell types

Volvox carteri

Volvox rousseletii

Model changing frequency of sex (based on environment) and autocorrelation of sex

Project Proposal

McCracken & Starr 1970

V. rousseletii transcriptomes

 Look for regulatory differences between cell types

Life history modeling

- How environmental variation (sex/asex) selects for three cell types
- Investigate optimal cell type proportion based on environment and physiology

Acknowledgements

- Michod Lab: Deborah Shelton, Patrick Ferris, Zach Grochau-Wright
- Régis Ferrière (UA),
 Bradley Olson (KSU),
 Aurora Nedelcu (UNB)

Will Driscoll

Temporal to Spatial Differentiation

Nedelcu & Michod 2006

Does *V. rousseletii* really have three cell types?

- No: not cellular specialization on <u>unique</u> fitness component
- Yes: cellular specialization on <u>some</u> fitness component
- Yes: cell traits "clearly" advantageous for group level, disadvantageous for cell level
- Yes: distinct cellular development and morphology
- Yes: spatial context of developmental cues maintained and expanded

Role of Plasticity in Cell Type Evolution

- Schlichting 2003 "Origins of differentiation via phenotypic plasticity"
- Recent work often utilizes plasticity to model the evolution of germ/soma
- Volvox model:
 - Chlamydomonas (1 cell type)
 - Eudorina (1 type in bad environment, 2 types in good)
 - Volvox carteri (2 cell types)
 - Volvox rousseletii (3 cell types, depends on environment)