

Why engineer differentiation/division of labor?

Model system for hypothesis testing

A — B B — B

Bioengineering proofof-principle

- Feynman (attrib.)

Starting point for experimental evolution

Terminal differentiation model: "germ-soma" division of labor

Necessary features:

- Irreversible differentiation
- Limited somatic cell growth
- Somatic cells help germ cells grow

A gene excision-based system for differentiation

Invertase secretion by somatic cells helps germ cells grow in sucrose media

Figure from Koschwanez JH et al., 2011

Ubiquitin monomer linkers reduce troubleshooting of fusion proteins

After cleavage by native yeast proteases:

- the C-terminal peptide has no tag and can still enter the secretory pathway
- the fluorescent protein retains the Ubq monomer and is active/stable

Other features of our system

Conversion rate control:

- Only newborn daughters
 express Cre → "per division"
 conversion rates
- Conversion rate depends on inducer (β-estradiol) concentration

Variety of lifestyles:

- Unicellular
- Clonal groups
- Colonial growth
- Flocculation

Choosing the "growth accelerator"

The "growth accelerator" gene can be:

- a) CDC28 essential cell cycle gene; excision halts growth (if native CDC28 locus is deleted)
- a) cyh2^r cycloheximide-resistant allele of ribosomal protein;
 excision slows growth in cycloheximide
 (if native copy of CYH2 is cycloheximide-sensitive)

Absence of the "growth accelerator" impedes somatic cell division CDC28 cyh2^{r/}cyh2^s

Cultures approach a steady-state ratio between cell types

[β -estradiol] (nM)

Cooperation between cell types

cyh2^{r/}cyh2^s in 0.5% sucrose with 500 nM cycloheximide

Hypothesis testing: unicellular differentiation isn't an ESS

Unicellular case

Eventually the culture crashes (not enough Suc+ cells)

Multicellular case

Competition assay design

We expect the cheater to increase in frequency:

- in the unicellular case, cheaters have the same access to monosaccharides as germ cells
- in glucose, conversions are always costly somatic cells aren't useful

Competition assay results

Special thanks to:

Andrew Murray & co.
...esp. John Koschwanez
The Gottschling Lab
KITP Conference Organizers

