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The Parallel Replica Algorithm

The Parallel Replica Algorithm proposed by A.F. Voter in 1998 is a
method to accelerate a “coarse-grained projection” of a dynamics.
We consider the overdamped Langevin dyanmics:

dXt = −∇V (Xt) dt +
√

2β−1dWt

and we assume that we are given a smooth mapping

S : Rd → N

which to a configuration in R
d associates a state number (e.g., a

numbering of the wells of the potential V ).

The goal of the parallel replica dynamics is to generate very efficiently a
trajectory (St)t≥0 which has (almost) the same law as (S(Xt))t≥0.

Luskin (UMN) KITP12 - ParRep June 7, 2012 1 / 21



The Parallel Replica Algorithm

Initialization: Consider an initial condition X ref
0 for a reference walker, the

associated initial state S0 = S(X ref
0 ), and a simulation time counter

Tsimu = 0.

One iteration of the algorithm goes through three steps.

The decorrelation step: Let the reference walker (X ref
Tsimu+t)t≥0 evolve

over a time interval t ∈ [0, τcorr ]. Then,

If the process leaves the well during the time interval (i.e., ∃t ≤ τcorr
such that S

(

X ref
Tsimu+t

)

6= S
(

X ref
Tsimu

)

) advance the simulation clock by
τcorr and restart the decorrelation step ;
otherwise, advance the simulation clock by τcorr and proceed to the
dephasing step.
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The Parallel Replica Algorithm

The reference walker enter a new state

Luskin (UMN) KITP12 - ParRep June 7, 2012 3 / 21



The Parallel Replica Algorithm

Decorrelation step: wait for a time τcorr .
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The dephasing step: Duplicate the walker X ref
Tsimu

into N replicas. Let
these replicas evolve independently and in parallel over a time interval
of length τdephase . If a replica leaves the well during this time interval,
restart the dephasing step for this replica. Throughout this step, the
simulation counter is stopped.

Luskin (UMN) KITP12 - ParRep June 7, 2012 5 / 21



The Parallel Replica Algorithm

Dephasing step.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The parallel step: Let all the replicas evolve independently and track
the first escape event:

T = inf
k
T k
W = T

K0
W ,

where K0 = arg infk T
k
W and

T k
W = inf{t ≥ 0, S(X k

Tsimu+t) 6= S(X k
Tsimu

)}

is the first time the k-th replica leaves the well. Then:

Tsimu = Tsimu + NT and X ref
Tsimu+NT = X

K0
Tsimu+T

.

Moreover, over [Tsimu,Tsimu +NT ], the state dynamics St is constant
and defined as:

St = S(X 1
Tsimu

).

Then, go back to the decorrelation step...
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The Parallel Replica Algorithm

Parallel step.
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The Parallel Replica Algorithm

Parallel step: run independent trajectories in parallel...
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The Parallel Replica Algorithm

Parallel step: ... and detect the first transition event.
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The Parallel Replica Algorithm

Parallel step: update the time clock: Tsimu = Tsimu + NT .
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The Parallel Replica Algorithm

A new decorrelation step starts...
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The Parallel Replica Algorithm

New decorrelation step
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Error analysis for the Parallel Replica Algorithm

The parallel step would introduce no error if

the escape time T 1
W was exponentially distributed

and independent of the next visited state.

How can we analyze the error introduced by the algorithm ?
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Parallel Replica Dynamics

Parallel Replica Dynamics – Steps
Escaping a Single Well

1 Decorrelation Step – Let a reference process sample a well for some
time

2 Dephasing Step – Simultaneously create independent replicas that
further sample the well

3 Parallel Step – Run the replicas until one exits the well
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Parallel Replica Dynamics Decorrelation Step

Decorrelating the Reference Process

Structure of the Decorrelation Step

Run for t ≤ tcorr

If Xt leaves the well, begin again, in the new well

tcorr must be long enough for it to “forget” its previous state

If tcorr is too long, it reproduces a serial computation

tcorr is one of the user parameters

Simulation clock is advanced by tcorr
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Parallel Replica Dynamics Dephasing Step

Dephasing by Direct Simulation

Structure of the Dephasing Step

Replicas begin running at tlaunch < tcorr (tlaunch can be zero, as in the
previous Par Rep version)

Run replicas for tlaunch ≤ t ≤ tlaunch + tphase = tcorr

If X k
t leaves the well, restart it

tlaunch and tphase are other user parameters
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Parallel Replica Dynamics Parallel Step

Structure of the Parallel Step

The first process k∗to leave the well, at time Texit := Tk∗ , becomes
the new reference process, and the algorithm restarts

The simulation clock is advanced by NTexit
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Parallel Replica Dynamics Parallel Step

Parallel Replica Dynamics – Recap

Clock Time t

xx0

Xref
t

X2
t

Xk?
t

Wj

tsim + tlaunch

tsim + tcorr

tsim + tcorr + T k?

tsim

X2
tXN

t

t
p
h
a
se

T
k
?

D
ecorrelation Step

D
ephasing Step

Parallel Step
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Main Results

Goals

Given that we begin in well W ⊂ Rn, determine the properties of
Texit, the first exit time from W

What is the distribution for Texit?

What are the properties of XTexit
, the first hitting point distribution?

Can we estimate the accuracy of ParRep?

Can we optimize the efficiency of ParRep?
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Main Results QSD — Exponential First Exit Time

Fokker-Planck Equation

The Fokker-Planck Equation for the overdamped Langevin equation
dXt = −∇V (Xt)dt +

√
2β−1dBt and absorbing boundary conditions:

∂ρ

∂t
= L∗ρ := ∇ ·

[
(∇V ) ρ+ β−1∇ρ

]
∀x ∈W , t ≥ 0,

ρ(x , t) = 0 ∀x ∈ ∂W , t ≥ 0,

ρ(x , 0) ≥ 0 ∀x ∈W ,

∫
W
ρ(x , 0) dx = 1,

is given by the series expansion

ρ(x , t) =
∞∑
1

aje
−λj tψj(x),

for eigenvalues 0 < λ1 < λ2 ≤ · · · and eigenfunctions ψj(x) of

L∗ψj = ∇ ·
[
(∇V )ψj + β−1∇ψj

]
= −λjψj ∀x ∈W ,

ψj = 0 ∀x ∈ ∂W .
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Main Results QSD — Exponential First Exit Time

The Exit Density

The exit density through the boundary point x ∈ ∂W at time t ≥ 0 is

β−1
∂ρ

∂n
(x , t),

the first exit time density is∫
∂W

β−1
∂ρ

∂n
(x , t) dx ,

and the first hitting point density is∫ ∞
0

β−1
∂ρ

∂n
(x , t) dt.
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Main Results QSD — Exponential First Exit Time

The Quasistationary Distribution (QSD)

The renormalized density ρ(x , t) converges to ψ1(x) at rate λ2 − λ1
(where ψ1(x) > 0 is normalized by

∫
W ψ1(x , t) dx = 1):

ρ(x , t)∫
W ρ(x , t) dx

= ψ1(x) + O
(

e−(λ2−λ1)t
)

as t →∞.

The Fokker-Planck solution ρ(x , t) = ψ1(x)e−λ1t has exit density

β−1
∂ψ1

∂n
(x) e−λ1t ∀x ∈ ∂W , t ≥ 0,

with independent exit time and hitting point.
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Main Results QSD — Exponential First Exit Time

The Quasistationary Distribution (QSD)

The first exit time density of ρ(x , t) = ψ1(x)e−λ1t is exponential:∫
∂W

β−1
∂ψ1

∂n
(x) e−λ1t dx = λ1e−λ1t ,

and independent of the hitting point density:∫ ∞
0

β−1
∂ψ1

∂n
(x) e−λ1t dt =

1

λ1β

∂ψ1

∂n
(x).
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Main Results QSD — Exponential First Exit Time

The Quasistationary Distribution (QSD)

Definition

On well W , a QSD is a distribution ν such that for all A ⊂W and t ≥ 0,

ν(A) =

∫
W

Px [Xt ∈ A | t < Texit] dν(x). (1)

The dephasing stage of the Par Rep Method converges to the QSD as
tphase →∞. (1) states that the QSD is invariant for the dephasing step.

Theorem

ψ1(x) dx is a QSD where ψ1(x) > 0 is the unique ground state of the
Fokker-Planck operator with eigenvalues 0 < λ1 < λ2 ≤ ...

L∗ψj = ∇ ·
[
(∇V )ψj + β−1∇ψj

]
= −λjψj ∀x ∈W ,

ψj = 0 ∀x ∈ ∂W .
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Main Results QSD — Exponential First Exit Time

Utility of the QSD

Theorem

Let X k
t be N i.i.d. processes in the well W , and assume:

T k
exit are exponentially distributed,

Exit time is independent of hitting point.

If
Texit ≡ T k?

exit, XTexit
≡ X k?

T k?
exit

, k? ≡ argminkT k
exit,

then NTexit has the same law as T k
exit, and XTexit

is independent of first
hitting time.

QSD and ParRep

Goal of the decorrelation/dephasing step: Produce N processes distributed
as close as possible to ν.
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Main Results Decorrelation Step

Decorrelation Result

Theorem

Let X0 be distributed by µ0 on W , then for any observable f

|Eµt [f (T ,XT )]− Eν [f (T ,XT )]| . d(µ0, ν) ‖f ‖L∞ e−(λ2−λ1)t .

where

dµt(x) :=
ρ(x , t) dx∫
W ρ(x , t) dx

.

d(µt , ν) measures the difference between µt and ν; vanishes as
t →∞.

Exponential convergence with decorrelation time scale is

1

λ2 − λ1
ParRep is efficient when the decorrrelation time scale is much less
than the mean first exit time

1

λ2 − λ1
� 1

λ1
.
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Main Results Decorrelation Step

Decorrelation Example

We have

|Eµtcorr [f (T ,XT )]− Eν [f (T ,XT )]| . d(µ0, ν) ‖f ‖L∞ e−(λ2−λ1)tcorr

For any t ≥ 0, to obtain an error estimate for the first exit time let
f (τ, ξ) = χτ>t ; then∣∣∣Pµtcorr [T > t]− e−λ1t

∣∣∣ . d(µ0, ν)e−(λ2−λ1)tcorr

For any t ≥ 0, to obtain an error estimate for the exit point
distribution, let f (τ, ξ) = φ(ξ); then∣∣∣∣Eµcorr [φ(XT ) | T > t]−

∫
∂W

φdρ

∣∣∣∣ . d(µ0, ν)e−(λ2−λ1)tcorr
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Main Results Parallel Step

Parallel Step Error

Theorem

Assume at time tcorr, there are N processes X k
tcorr distributed according to

µcorr and such that

|Eµcorr [f (T ,XT )]− Eν [f (T ,XT )]| ≤ εcorr ‖f ‖L∞ .

Then for any φ : ∂W → R, smooth,∣∣∣Pµcorr [T k∗ > t
]
− e−Nλ1t

∣∣∣ . Nεcorr,∣∣∣∣Eµcorr [φ(XT k∗ ) | T k∗ > t
]
−
∫
∂W

φdρ

∣∣∣∣ . N ‖φ‖L∞ εcorreNλ1t .

Factor of N speedup
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Remarks

Remarks on ParRep

ParRep converges as tcorr →∞, shrinking εcorr → 0 over a single well,

Computing λ2 and λ1 directly from the parabolic problem is
non-trivial/intractable in high dimensional systems,

L∗ψj = ∇ ·
[
(∇V )ψj + β−1∇ψj

]
= −λjψj ∀x ∈W ,

ψj = 0 ∀x ∈ ∂W .

Currently investigating ways of approximating λ2 − λ1 on-the-fly.

Study of error over many cycles is underway.

Study of Langevin and other generalizations is underway.
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= −λjψj ∀x ∈W ,

ψj = 0 ∀x ∈ ∂W .

Currently investigating ways of approximating λ2 − λ1 on-the-fly.

Study of error over many cycles is underway.

Study of Langevin and other generalizations is underway.
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Computational Experiments

1 Parallel Replica Dynamics
Decorrelation Step
Dephasing Step
Parallel Step

2 Main Results
QSD — Exponential First Exit Time
Decorrelation Step
Parallel Step

3 Computational Experiments

4 References
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Computational Experiments

Toy Problem

Set Up

V (x) = −k cos(πx).

Wells boundaries at odd integers, centered at even integers.

β = 1.

µ0 = δ0.

After decorrelating a single trajectory, the QSD is sampled exactly.

Questions

For what values of k will there be a spectral gap?

How does tcorr alter the hitting time, XT , in well at ±10.

How well does ParRep perform?
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Computational Experiments

Time Scale Separation
V (x) = −k cos(πx)
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Scale separations exist
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Computational Experiments

Rapid Convergence to the QSD

(Loading...)

V (x) = −2 cos(πx), β = 1.

W = (−1, 1).

Initial distribution is δ0(x).
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Computational Experiments

First Exit Problem – Many Wells

−10 −8 −6 −4 −2 0 2 4 6 8 10
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x

V

Process ends if Xt enters either well at ±10.

Run a full step of ParRep (Decorrelation, Dephasing, Parallel) every
time a new well is entered.

Dephasing is conducted “analytically” from the QSD.
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Computational Experiments

Hitting Time Distribution, k = 1
V (x) = −k cos(πx), Target Wells ±10
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Time scale separation
∼ 10

Cases with
tcorr < 2/(λ2 − λ1) give
poor results
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Computational Experiments

Performance, k = 1
V (x) = −k cos(πx), Target Wells ±10
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ParRep 800 Mult. 10
ParRep 900 Mult. 20
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For small separation of time scales, ∼ 10, minimal speedup
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Computational Experiments

Number of Wells Visited, k = 1
V (x) = −k cos(πx), Target Wells ±10
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Computational Experiments

Hitting Time Distribution, k = 2
V (x) = −k cos(πx), Target Wells ±10
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Computational Experiments

Performance, k = 2
V (x) = −k cos(πx),Target Wells ±10
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For larger separation of time scales, ∼ 80, speedup approaches
theoretical factor of N = 100.
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Computational Experiments

Number of Wells Visited, k = 2
V (x) = −k cos(πx), Target Wells ±10
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Despite agreement in the exit time distributions, there may be
disagreements in the distribution in the number of wells visited
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Remarks

Remarks on Results

ParRep appears to converge as tcorr →∞ over many wells

ParRep is more efficient when the scale separation is large

Convergence of the hitting time distribution may not imply
convergence of the state to state dynamics

Study of Langevin and other generalizations is underway
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