Modeling Soft Matter: Linking Multiple Length and Time Scales KITP Conference, Santa Barbara, June 4-8, 2012

Coarse-grained Models for Oligomer-grafted Silica Nanoparticles

Bingbing Hong Alexandros Chremos Athanassios Z. Panagiotopoulos

Department of Chemical & Biological Engineering

Nanoscale ionic & organic hybrid materials

Atomistic reference (PEO chains)

Modified TraPPE potential for CH₃O[CH₂CH₂O]_nCH₃

Transport properties of atomistic models for CH₃O(CH₂CH₂O)_nCH₃

	State point		Viscosity (mPa·s)		Diffusivity (10 ⁻⁵ cm ² /s)	
n			sim	expr	sim	expr
1	296.15K, 1bar				3.15±0.02	3.2
	298.15K, 1bar		0.35 ± 0.02	0.394	3.13±0.04	
	303.15K, 10bar		0.34 ± 0.07	0.402	$3.47{\pm}0.04$	
3	303.15K, 10bar		$1.7{\pm}0.4$	1.761	0.61±0.02	
5	303.15K, 10bar	N = 50	4.4±3.3	4.588	0.15±0.03	
		N = 200	5.0±2.1		$0.181{\pm}0.008$	
		N = 400	4.8±2.5		$0.187{\pm}0.009$	
9	303.15K, 10bar		16.3±9.5		0.041 ± 0.005	
	318K, 1bar		11.9±7.0	13.34	$0.062{\pm}0.005$	
12	298.15K, 1bar		33.3±15.0		0.017±0.005	
	303.15K, 10bar		41.1±17.3		0.018±0.002	

Hong, Escobedo, AZP, J. Chem. Eng. Data, 55: 4273-80 (2010)

Coarse-Graining: PEO chains

Persistence length:

~ 0.46nm (~3.2 repeat units)

Harmonic bond potential

Fitted equilibrated bond length between coarse-grained (CG) beads to the distance between two atomistic groups

Harmonic angle potential

Determined from matching the end-to-end distance of long CG chains to atomistic simulations

End-to-end distance and structure of CG PEO chains

Diffusivity of PEO chains

 Coarse-graining speeds up dynamics due to softer potentials which reduce the friction of cage escape.

 Speed-up factors depend on T

• Raising T or coarsegraining shortens the "oligomer" regime.

Slope: ~ -2.5 (red squares) ~ -1.3 (others)

Coarse-graining: core particles

"Semi-atomistic" model: 1-center cores + full chains

- Large number of interaction sites, slow relaxation
- Simulations only feasible at high T

B. B. Hong, AZP, JPCB 116: 2385-2395 (2012)

Core-bead CG interactions

single core in atomistic and CG monomers.

Iterative Boltzmann
 Inversion to fit core-bead
 g(r) at 303.15 K

Core-core interactions also need to be adjusted

Corrected core-core interactions

Smaller corrections for shorter grafted chains

Poor transferability to different Ts and chain lengths

3 *r* (nm)

2.5

7 beads (13-mer)

coarse-grained

3.5

atomistic

2000

0

U_{cc} (*r*)/*k*_B (K)

4000

Δ

Counter-intuitive core dynamics

NOHMs with uncorrected potentials or short-chain NOHMs with corrected potentials diffuse *more slowly*

Cores grafted with longer chains CG diffuse *faster*

Chain dynamics behave normally

 Coarse-graining speeds up chain relaxations – chain motions are not the cause for core slow-down

• Core potentials have little effect on chain relaxation

Other possible causes for unexpected dynamics?

• Chain extensions – no different

	3-bead NOHMs	7-bead NOHMs	
Uncorrected U	5 % longer	4 % longer	
Corrected U	4 % longer	Within errors	

Grafting topology

• g(r) data: space between neighbor cores (s) ~ 0.4 nm

atom ~ 0.3 nm bead ~ 0.65 nm

atomistic segments rotate to fit; CG bead are too big

Cage escape dynamics

Softer potential \rightarrow faster cage escape

Integrand for acceleration factor

- $<\Delta V_{b} > > 0$ for chains
- $<\Delta V_{b} > < 0$ for cores.
- Speedup or slowdown depends on core/chain content.

Ionic coarse-grained models

Linear (NIMs-L)

Stars (NIMs-S)

Bead LJ parameters from $T_C \& \rho_C$ of CH_3 -O-CH₃

Electrostatic interactions :

$$V_{\rm E}(r) = \frac{1}{4\pi\epsilon_0\kappa} \, \frac{q_i q_j}{r}$$

relative permittivity:

$$\kappa = 4$$
 (for SiO₂, PEG)
 $\Rightarrow V_{E}(\sigma) = 35k_{B}T$

Core-core correlation functions

Dynamics: NIMs-S (chains not shown)

Diffusion of chains and cores

Canopy chain exchange

Canopy chain exchange kinetics

Conductivities

$$\mathbf{M}_{J}(t) = \sum_{i} q_{i} \mathbf{r}_{c.m.i}(t)$$
$$\lim_{t \ge t_{c}} \left\langle \Delta \mathbf{M}_{J}^{2}(t) \right\rangle = \lim_{t \ge t_{c}} \left\langle \left[\mathbf{M}_{J}(t) - \mathbf{M}_{J}(0) \right]^{2} \right\rangle = \left[6Vk_{B}T\sigma(\omega = 0) \right] t + 2 \left\langle \mathbf{M}_{J}^{2} \right\rangle$$

• simulated conductivity 2.5 times the value of polyoxometalates (POM(-)) grafted with two N(+)(CH₃)(C₁₈H₃₇)[(EO)_n][(EO)_m] (n+ m = 15) at 373 K.

Summary & discussion points

Bulk PEO chains

- structural properties in good agreement with atomistic models
- diffusion coefficients increase by a nearly constant factor at high *T* only
- non-trivial scaling at low T

NOHMs (non-ionic)

Diffusion of nanoparticles can be *slower* in coarse-grained models under some conditions

NIMs (ionic)

- insights on mechanism for fluidity + conductivity
- reasonable agreement with experiments using simple "thermodynamic" CG models

Open question

Is there a way to obtain dynamic scaling of CG models for complex nanoparticle / chain systems?