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Hierarchy of coarse-grain polymer models
> Ab initio HOH

+-:::—:':+n
> Atomistic models

> Mescoscopic particle-based models @

= Particle-particle interactions

= Density based interactions Particle
("Edwards" Models) World

Mesoscopic field-based models

Continuum
= "Molecular Fields" /\y World
= Ginzburg-Landau models

(Flory-Huggins-de Gennes, Ohta-Kawasaki, ...)
> Macroscopic continuum models




"Edwards" models for polymers

Two elements:

ZIJ’\_ _‘L » Model for bonded interactions
e.g., Gaussian chains
\ e .

Example: Dense
AB-copolymer melt

» Density-based model for
non-bonded interactions




Non-bonded interactions (one component)

Weak Interactions: 'Virial Expansion'
— Additional Contribution to the Hamiltonian

o, [5]= % [ar 5+ 2 ar 574

with the 'monomer density: p(r)= > [dsd(r-R,(s))
polymers

Generalization to strong interactions:
"Local density functional” %, [p] = J’dr o f(p)

Popular Ansatz: Incompressibility ¢, [p]= [dr &(p—p,)




Example: Edwards model for AB blends

Most popular model in theories of (co)polymer blends

_ . . 3 [ dR \ 2
» Continuous Gaussian chains: J(,[R(s)] = - _[O ds ()

> Two types of monomers (j = A or B): 0, () -

b (=Y jON“ds 5(r-R, (s)) 0, (s)

polymers o

{1 j-monomer

0 Otherwise

> Incompressible: Constraint 5, + 5, =p, everywhere.

» Flory-Huggins Interactions:

S}C,:poxj'dr D, D, with (Dj:ﬁj/po




Interpretation of the Edwards model

Realization of a discrete

version of the Edwards model
for AB-copolymers

Lr._

il

Continuum limit? \ — 7

Pragmatic of view: Continuum limit is unphysical!
Discrete coarse-graining length should be part of the model.

Alternative: Tackle continuum limit, full field theory
= Ultraviolet divergencies, renormalization necessary, ...
(David Morse, Glenn Fredrickson)




Other Issues and caveats

Topological interactions are missing in Edwards models

(Soft interactions, chains may cross each other.)
» Affects dynamical properties & statics in ultrathin films

> Does not affect statics of linear chains in 3 dimensions.

Flory-Huggins y-parameters:

» Can sometimes be determined experimentally, e.g. by
differential scanning calorimetry, SAXS, SANS

» But: may depend on temperature, composition, chain length

» General, exhaustive theory still lacking
(despite considerable efforts over decades!)

> Very concept of y-parameter has been questioned
(e.g., Tambasco, Lipson, Higgins, 2006)




Direct simulation of Edwards models

Most straightforward way of studying Edwards models:

Requires:

> Discretized formulation L

> For convenience:
Compressible version, e.g.,

%K:%jdr (@A‘I‘@B_po)z \ ‘ |

(Laradji, Guo, Zuckermann 1994, Besold et al 1999,
Miiller et al 2005, de Pablo et al 2008, Q. Wang,...)




From Particles to Fields:

Some Basics on the
Self-Consistent Field theory
(SCF theory)




Partition function of the Edwards model

For simplicity: Canonical, one component only

Z o iH [poj@Ra e'%o[Ra]:| e—f}(:,[f)]

n!
/ \
Path integral over non-bonded
all possible chain Interactions
conformations R(s)

a=1

Bonded interactions:
Gaussian chains




Approach |: Density functional theory

Basis: (Hohenberg-Kohn theorem)
Free energy of an inhomogeneous system can be described

by a functional = [p(r)] that only depends on local densities.

— Task: "Guess" = [p(r)]

Ansatz: = [p(n] = Tyalp(r)] + I[p(r)]

“ya [p(r)] : Reference system of ideal, noninteracting
chains

JG[p(r)] : Nonbonded interactions (treated perturbatively)




Approach |: Density functional theory

Reference system: Noninteracting chains

= Auxiliary System: Systems with varying external field W(r)
Free energy: G ,[W]=-nIn(Q[W ]/n)
, 5G4 [W ] §InQ [W ]

— Density:  +p(r)= W (1) Sl W (1)

- Legendre transform W(r) — p(r)

= Density functional of reference system:

Fialp] =G __jdr (r)




Approach |: Density functional theory

Full free energy functional (everything taken together)

E [p(r)}:—n In[%}—ﬁjdr W p+3C [p]

3InQ[W ]
SW (r)

with W determined from:  L-p(r) = —n

SCF theory:

Minimize this functional with respect to p(r)

= Gives SCF equations iW (r) = |




Approach Il: Polymer field theory

Partition function

1 _ —9C .74
Z = L[1[o.[oR, e ]e 0
n!oczl

Faddeev-Popov transformation: Insert

S(p—p)=[DW exp(FW (p—p))

joo

= Fluctuating field theory |Z = [9W [Dp exp(-F )

with |F =-n In[%}—ﬁjdr Wp+3C, [p]




Derivation Il: Polymer field theory

Starting from fluctuating field theory

Z =_j6DW J“Dp exp (-F )

with F =-n In[%}—ﬁjdr Wp+3, [p]

SCF approximation: Saddle point integral

— Minimize ¥~ with respect to W and p.

= Gives same SCF equations than density functional.
and, same free energy ¥




Two Approaches to the SCF Theory

Density Functional

0 Good starting point for a
more detailed incorporation
of microscopic structure
(packing, local monomer
correlations, etc.)

— Adjust reference system

0 Established starting point for
dynamical studies (dynamic
density functional theories)

Field theoretic approach

0 Range of possible underlying
models is restricted
(incorporating hard-core inter-
actions is difficult) .

0 Good starting point for a
systematic study of long-
range ("ultrared" ) fluctuation
effects.

Otherwise, both approaches result in equivalent field theory!




Summary: Molecular fields

Density functional of the type

F[p(r)]=-n |n[%}—ﬂdr Wp+3, [p]

Degrees of freedom: Density fields p(r)

Free energy functional still contains information
on molecular structure (connectivity etc.)

Quantitative connection to an (almost) equivalent
particle-based Edwards model




Part Il
Molecular Field Simulations:
Examples

Xuehao He

Liangshun Zhang

(X. He, FS. Macromolecules 39, 2654 (2006) and 39, 8908 (2006),,
X He, FS, Phys. Rev. Lett. 100, 137802 (2008)
L. Zhang, A. Sevink, FS, Macromolecules 44, 9434(20117)).




The problem: Copolymeric vesicles

Y } : (Shen, Eisenberyg,
200 nm

(Y. He et al, 2006) S 7999)

» Structures presumably not truly at equilibrium.
(nevertheless technologically interesting)

» Kinetics of vesicle self-assembly is important.




Vesicle formation

,Conventional” pathway

(as observed in simulations of short chain surfactants)

® ® ® ®
o o
®e o \ 0 b 0
»® & ®
Micelle Aggregation Bending Closing

Self-assembly To Sheet To Vesicle




Our model system: copolymers

':-——._/'\_\f\/\.'.
I e N )

SN~ A L

B [
Copolymers A-B ~ Solvent S

Molecules : Flexible (Gaussian) chains with blocks A, B
Solvent: Single, “point-like” particles S

Interaction potential
- Compressibility term
- (In)compatibility: Flory-Huggins parameters y,., v .15, Z5s




Dynamic density functional theory
(Fraaijje, JCP 99, 9202 (1993); ..., Maurits, Fraaijje, JCP 107, 56879 (1997 ))

General Ansatz (diffusive dynamics)

ot

A Onsager coefficient
1. Local excess chemical potential 11, = 6F /éspj (r')

External Potential Dynamics (Maurits, Fraajje, 1997)
Rouse dynamics: A,].(r,r) ~ single chain correlator

= ... Dynamic equations
can be rewritten as —W;,=-D A p,
. ot \
(approximately)

Diffusion constant




Vesicle Formation Process ()

High Copolymer volume fraction (23 %)




Vesicle Formation Process ()

High Copolymer volume fraction (23 %)

— Recover Conventional Pathway




Vesicle Formation Process (ll)

Lower Copolymer volume fraction (10 %)




Vesicle Formation Process (ll)

Lower Copolymer volume fraction (10 %)

= New Pathway: Nucleation and Growth




A New Pathway of Vesicle Formation

For copolymeric vesicles, at low copolymer density

Droplet Micelle Semivesicle Vesicle
Nucleation

0

(X. He, F.S., Macromolecules 06).




Variation of Parameters

Copolymers A-B  Solvent S

Vary systematically

— Copolymer concentration ¢,
— Hydrophilicity of B-block yz<




Other possible Structures

Depending on parameters, one gets ...

... Rods

... JToroidal
structures




"Phase Diagram"
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"Phase Diagram"

Final Structures
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"Phase Diagram"

Dynamics of structure formation

0.2

Growth
pathway

0.0 48

CMC
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S p| n Od al -0.8 - I Rods/Spheres
o Vesicles
4  Toroidal Structures
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| Coalescence

pathway
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b (X. He, FS, PRL 08).




Next step: Introduce hydrodynamics
(L. Zhang, A. Sevink, FS, Macromolecules 44, 9434(20117)).

Our Ansatz: Couple

Convection-diffusion equation in flow v(r)

8pj ] ] 1
ot M jdr ZvrAij(r’r )Vr'“j(r )
ij

(convection)

to Navier Stokes Equations

P (OV + v(Vv))V(c—P)—

(thermodynamic force)




Simulation method

(L. Zhang, A. Sevink, FS, Macromolecules 44, 9434(20117)).
Convection-diffusion equation

op .
aptj +V(vp;)=M jdr'z VA (r )V (r)
i

— Finite Difference Scheme as before

Navier Stokes Equations
Pn (OV+V(VV))=V(6—-P)=> pVy,

— Lattice-Boltzmann with force coupling
(following DUnweg et al.)




Results: Dynamics of vesicle formation

With hydrodynamics Without hydrodynamics

time=40 T : time=40 y .




Results: Dynamics of vesicle formation

With hydrodynamics Without hydrodynamics

!

time=40 time=40 s oa—

.

T

(Time

unit: ~ 4us ; Total time: ~ 200 ms)




Results: Dynamics of vesicle formation

With hydrodynamics

time=40000 .l T

ey
o

Without hydrodynamics

time=40000 " e

el

= Pathways similar with hydrodynamics
= Hydrodynamics speed things up




Part Il
Adaptive Multiscale Scheme
Linking Particles and Fields

l Shuanhu QI

(Work in progress).




gl

el

Particle-based
Edwards model

N
W

B

Molecular
Field model

Adaptive switching
between equivalent representations




ldea: Space-dependent ‘identity’ switches

Starting point: 1 0 . _9C 1
Z =21 [n[oR, e®™]e 0

» Define "local chemical potential” Au(RY) acting on first bead.

> Insert identity 1, = Zl_oexp(-Au(Ri)Ta' V(RZ))
with v (r)=1In (e'A“(r) +1)

7,=0: type f (‘field’)

— Additional degree of freedom :
t,=1: type p (‘particle’)

» Transform polymers of type f to molecular fields

= Mixed semi-grandcanonical particle/field scheme




Simulation method

> "Particle" chains: Monte Carlo monomer moves

» "Fleld" chains: Two implementations:

- External potential dynamics
- Monte Carlo moves (fluctuating densities)

» |dentity switches:

Configuration-bias Monte Carlo
(Rosenbluth sampling)




First test: Homopolymers in thin films

Chemical potential Density profiles

difference ' Tofal ' P—

Fields

Z [Ry]

Particles

(10.000 chains, N=20
V= (8*8*16) R*)




First test: Homopolymers in thin films

Chemical potential Snapshot (particle chains only)
difference

Z [Ry]

(10.000 chains, N=20
V= (8*8*16) R*)




Comparison with "pure” models

Total density profiles

" MCP

p——

sSCME

Pure particle model
(reference system)

Hybrid model
Pure field model

0
Z [R]

—> Hybrid model improves on the pure field model




Conclusions

> Molecular field models (density functional theories)
are at the interface between particle-based
molecular models and continuum models,
because they still keep information on
molecular structure and architecture.

» Molecular field simulations can give insight
Into phenomena on mesoscopic scales.

» Our hybrid particle-field scheme may provide a
convenient link between particle- and field-based
models for soft matter in the future.
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Starting Point: "Standard Model" (Recall)

For simplicity: Single component copolymer melt
Melt of AB diblock copolymers o with A-monomer fraction f

Hamiltonian: o¢ = > 9 [R,] + 9, [p..Ps]

copolymers a

- Gaussian chains: ¢ [R (s)] = = IN ds (42)°
0

- Interaction energy: %, = p,y [dr @, &, with & =5 /p,

- Incompressibility constraint:p, +p, = p,

ﬁA(r):ZaIOfN ds 5(r-R,_(s))
po(r) =X J dsd(r-R,(s))

aJ fN

Monomer densities:




SCF Equations in a Nutshell I

Independent copolymer chains in the field W, (r)

Define segment dependent field:
W,(r): s< fN

W) = {WB(r): s> N

= Single chain partition function

40 [R]—ﬁjoN ds W(R(s),s)

0
Q:poj@R € - Q[WA’WB]
Monomer density distribution:

<f3A/B (r)>: -n N

o InQ[w ,w_]
8 W,,z(r)




SCF Equations in a Nutshell |

Basic idea (intuitive picture):
Chains are treated as independent paths in an average
(self-consistent) field created by the other chains.

pa(r) = pu(r)=(p.(r))
po(r) = pg(r)={pa(r))

g(:II:ﬁA’ﬁB]_>3CII:pA’pB]

Self-consistent fields: LWA/B (r) = 8%,  &(r)
N 8p /s (1) N
(factors 1/I\! / \
for convenience) Flory-Huggins Incompressibility

Interactions




Practical Implementation |

Tasks along the way

2+ Evaluate single-chain partition function
of chains in the external fields W,z

7+ Evaluate average densities p,(r)

. _ 5K
\/+ Evaluate fields Wi w,  (r)=N —-E=yN @, -¢&

3p s ()

Trick: Feynman-Kac formula

+ Define propagator G(r,,r,,s): Restricted partition function
for chains of length s with end monomers at r,

+ G(ry,rq, ) satisfies diffusion equation — can be evaluated.
<« Using G(r,,r,), calculate and densities p,5(r).




Practical Implementation I

More specifically

< Define partial partition functions:
q(r,s) = Jdr, G(ro,r,s) and q*(r,s) = [dr, G(r,r,,N-s)

< Diffusion equations
o.q(r,s) =

0.9 (r,s) =

(r,s)]q(r,s)

(r,N - s)]cf(r,s)

with g(r,0) =g*(r,0) =1

— Full partition function:

Densities: (5 (r))

s Jar q(r,N) = Jdr q*(r,N)

%Ids g(r.s) g (r,N—-s) 0, (s)




Practical Implementation Il

Structure of a typical (simple) SCF program

Starting from given density profiles and guess for &

1) Calculate fields w,,, (r)=yN @,,, ¢
2) Solve diffusion equations for q(r,s), q* (r,s)
3) Calculate single chain partition function »-

4) Calculate 'new' density profiles

5) Check whether SCF equations are fulfilled within
the desired accuracy.

If No: New guess for densities and &; go back to 1)
If Yes: Stop — You made it ©




Numerical Issues

a Efficient solution of the diffusion equation

< Direct real space integration schemes
(Crank-Nicholson, Dufort-Frankel,...)

< Pseudo-spectral split operator scheme
(mixed Fourier space/real space scheme)

< Full solution in Fourier space
Q Iterative solution of SCF equations
< Direct iteration, mix old and new densities with factor 4
<« Somewhat more refined: Anderson mixing
<+ Newton Raphson method (requires Jacobians)
« Broyden method




Derivation |l: Field-Theoretic Approach

Analysis of saddle point approximation:

Z=[2W, DW, DE[Dp, Dp, exp(-F )

Rewrite  F :C{(XNJ‘dr ® @0, - [drw, @
- [dre (®, +®, ~1)-V In[%}}

with ¢ = Po. Ginzburg parameter
N

= Saddle point approximation is good, if C is large.




Dynamic Density Functional Theory

Diffusive dynamics in external flow v(r)

OF
'Spj (r')

+V(ij):jdr'ZVrAij(r,r')Vr +m, (r,t)

A (r,r'): Generalized mobility (kinetic Onsager coefficient)
n; (r,t): Gaussian white noise ( <n, (r,t)>=0)
- Mean-field dynamics: n; (r,t) =0
- Fluctuating dynamics: 'Fluctuation Dissipation Theorem'

(n,(r.t) m,(rit))=-238(t-t) VA, (r,r)v,.

— Ensures distribution P[p| ~ exp(-=[p|) at equilibrium.




Experimental Example

(Han,Yu,Du,Wel, JACS 2010
ABA amphiphilic triblocks)

@ o @) e =L T S
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When do complex micelles form?

Consider formation process of cage micelles

> Q0 9 @

~ [nvolves unperturbed growth over long time period

Requirements:

» Growth pathway
» Little interaction with other nuclel
~ Parameter region close to CMC/Spinodal




First test: Homopolymers in thin films

Chemical potential Slice (particle chains only)
difference

Z [Ry]

(10.000 chains, N=20
V= (8*8*16) R*)




