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Part I

"Molecular Fields" :

A brief Introduction



Hierarchy of coarse-grain polymer models 

 Ab initio

 Atomistic models

 Mescoscopic particle-based models

 Particle-particle interactions

 Density based interactions 
("Edwards" Models)

 Mesoscopic field-based models

 "Molecular Fields"

 Ginzburg-Landau models

(Flory-Huggins-de Gennes, Ohta-Kawasaki, ...)

 Macroscopic continuum models

Particle

World

Continuum

World



Example: Dense

AB-copolymer melt

"Edwards" models for polymers

Two elements:

 Model for bonded interactions

e.g., Gaussian chains

 Density-based model for

non-bonded interactions
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Non-bonded interactions (one component)

Weak Interactions: 'Virial Expansion'

 Additional Contribution to the Hamiltonian

with the 'monomer density':

Generalization to strong interactions: 

"Local density functional"

Popular Ansatz: Incompressibility
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Most popular model in theories of (co)polymer blends

 Continuous Gaussian chains:

 Two types of monomers (j = A or B):

 Incompressible:  Constraint everywhere.

 Flory-Huggins Interactions:

with

Example: Edwards model for AB blends
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Realization of a discrete

version of the Edwards model

for AB-copolymers

Interpretation of the Edwards model

Continuum limit?

Pragmatic of view: Continuum limit is unphysical!

Discrete coarse-graining length should be part of the model.

Alternative: Tackle continuum limit, full field theory

 Ultraviolet divergencies, renormalization necessary, …

(David Morse, Glenn Fredrickson)



Topological interactions are missing in Edwards models

(Soft interactions, chains may cross each other.)

 Affects dynamical properties & statics in ultrathin films

 Does not affect statics of linear chains in 3 dimensions.

Flory-Huggins -parameters: 

 Can sometimes be determined experimentally, e.g. by

differential scanning calorimetry, SAXS, SANS

 But: may depend on temperature, composition, chain length

 General, exhaustive theory still lacking

(despite considerable efforts over decades!)

 Very concept of -parameter has been questioned

(e.g., Tambasco, Lipson, Higgins, 2006)  

Other issues and caveats



Direct simulation of Edwards models

Most straightforward way of studying Edwards models:

Requires: 

 Discretized formulation

 For convenience: 

Compressible version, e.g.,
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(Laradji, Guo, Zuckermann 1994, Besold et al 1999,

Müller et al 2005, de Pablo et al 2008, Q. Wang,…)



From Particles to Fields:

Some Basics on the

Self-Consistent Field theory

(SCF theory)



Partition function of the Edwards model

For simplicity: Canonical, one component only
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Basis: (Hohenberg-Kohn theorem) 

Free energy of an inhomogeneous system can be described

by a functionalF[(r)] that only depends on local densities.

→ Task:  "Guess"  F[(r)]

Ansatz:    F[(r)] = F
id

[(r) ]  + HI[(r)] 

F
id

[(r)] : Reference system of ideal, noninteracting

chains

HI[(r)]   : Nonbonded interactions (treated perturbatively)

Approach I: Density functional theory



Reference system: Noninteracting chains

 Auxiliary System: Systems with varying external field W(r)

Free energy:  

→ Density:  

 Legendre transform W(r) → (r)

 Density functional of reference system:

Approach I: Density functional theory
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Full free energy functional (everything taken together)

Approach I: Density functional theory
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Partition function

Faddeev-Popov transformation: Insert

 Fluctuating field theory

with

Approach II: Polymer field theory
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Derivation II: Polymer field theory

Starting from fluctuating field theory
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SCF approximation: Saddle point integral

→ MinimizeF with respect to W and .

 Gives same SCF equations than density functional.

and, same free energyF .



Two Approaches to the SCF Theory

Density Functional

 Good starting point for a 

more detailed incorporation

of microscopic structure

(packing, local monomer 

correlations, etc.) 

→ Adjust reference system

 Established starting point for

dynamical studies (dynamic

density functional theories)

Field theoretic approach

 Range of possible underlying

models is restricted

(incorporating hard-core inter-

actions is difficult) .

 Good starting point for a 

systematic study of long-

range ("ultrared" ) fluctuation

effects.

Otherwise, both approaches result in equivalent field theory! 



Density functional of the type

Degrees of freedom: Density fields (r)

Free energy functional still contains information

on molecular structure (connectivity etc.)

Quantitative connection to an (almost) equivalent

particle-based Edwards model

Summary: Molecular fields
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Part II

Molecular Field Simulations:

Examples

Xuehao He

Liangshun Zhang

(X. He, FS. Macromolecules 39, 2654 (2006) and 39, 8908 (2006),,
X. He, FS, Phys. Rev. Lett. 100, 137802 (2008)

L. Zhang, A. Sevink, FS, Macromolecules 44, 9434(2011)).



The problem: Copolymeric vesicles

(Y. He et al, 2006)

Structures presumably not truly at equilibrium.

(nevertheless technologically interesting)

Kinetics of vesicle self-assembly is important.

(Shen, Eisenberg,
1999)



Vesicle formation

„Conventional“ pathway 

(as observed in simulations of short chain surfactants) 



Our model system: copolymers

Molecules : Flexible (Gaussian) chains with blocks A, B

Solvent: Single, “point-like“ particles S

Interaction potential

- Compressibility term

- (In)compatibility: Flory-Huggins parameters AB , AS , BS

I



Dynamic density functional theory

General Ansatz (diffusive dynamics)

Lij : Onsager coefficient

i :  Local excess chemical potential

External Potential Dynamics (Maurits, Fraaije, 1997)

Rouse dynamics: L
ij
(r,r') ~ single chain correlator

 ... Dynamic equations

can be rewritten as

(approximately)
Diffusion constant

(Fraaije, JCP 99, 9202 (1993); …; Maurits, Fraaije, JCP 107, 5879 (1997 ))
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Vesicle Formation Process (I)

High Copolymer volume fraction (23 %)



Vesicle Formation Process (I)

High Copolymer volume fraction (23 %)

 Recover Conventional Pathway



Vesicle Formation Process (II)

Lower Copolymer volume fraction (10 %)



Vesicle Formation Process (II)

Lower Copolymer volume fraction (10 %)

 New Pathway: Nucleation and Growth



A New Pathway of Vesicle Formation

For copolymeric vesicles, at low copolymer density

( X. He, F.S., Macromolecules 06).



Variation of Parameters 

Vary systematically

 Copolymer concentration fp

 Hydrophilicity of B-block BS



Other possible Structures 

… Rods

…Toroidal

structures

… Rings

Depending on parameters, one gets …



"Phase Diagram" 



"Phase Diagram" 

Final Structures



"Phase Diagram" 

Dynamics of structure formation

Coalescence

pathway

Growth

pathway

CMC /

Spinodal

( X. He, FS, PRL 08).



Our Ansatz: Couple

Convection-diffusion equation in flow v(r)

Next step: Introduce hydrodynamics

to Navier Stokes Equations

(L. Zhang, A. Sevink, FS, Macromolecules 44, 9434(2011)).
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Convection-diffusion equation

Simulation method

Navier Stokes Equations

(L. Zhang, A. Sevink, FS, Macromolecules 44, 9434(2011)).
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→ Lattice-Boltzmann with force coupling

(following Dünweg et al.)

→ Finite Difference Scheme as before



Results: Dynamics of vesicle formation

With hydrodynamics Without hydrodynamics

(Time unit: ~ 4s ; Total time: ~ 200 ms)



Results: Dynamics of vesicle formation

With hydrodynamics Without hydrodynamics

(Time unit: ~ 4s ; Total time: ~ 200 ms)



Results: Dynamics of vesicle formation

With hydrodynamics Without hydrodynamics

 Pathways similar with hydrodynamics

 Hydrodynamics speed things up



Part III

Adaptive Multiscale Scheme

Linking Particles and Fields

Shuanhu Qi

(Work in progress).



The vision

Particle-based

Edwards model

Molecular

Field model

Adaptive switching

between equivalent representations



Starting point:

 Define "local chemical potential" (R0) acting on first bead.

 Insert identity

with

→ Additional degree of freedom 

 Transform polymers of type f to molecular fields

 Mixed semi-grandcanonical particle/field scheme

Idea: Space-dependent 'identity' switches
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Simulation method

 "Particle" chains: Monte Carlo monomer moves

 "Field" chains: Two implementations:

- External potential dynamics

- Monte Carlo moves (fluctuating densities)

 Identity switches:

Configuration-bias Monte Carlo

(Rosenbluth sampling)



First test: Homopolymers in thin films

0 8-8
z [Rg]

Total

Particles

Fields

0 8-8

z [Rg]

0

3

-4

(z)

Chemical potential

difference

(10.000 chains, N=20

V= (8*8*16) Rg
3 )

Density profiles



First test: Homopolymers in thin films

0 8-8

z [Rg]

0

3

-4

(z)

Chemical potential

difference

(10.000 chains, N=20

V= (8*8*16) Rg
3 )

Snapshot (particle chains only)



Comparison with "pure" models

Total density profiles

0 8-8
z [Rg]

Pure field model

Pure particle model

(reference system)

Hybrid model

 Hybrid model improves on the pure field model



Conclusions

 Molecular field models (density functional theories)

are at the interface between particle-based

molecular models and continuum models, 

because they still keep information on 

molecular structure and architecture.

 Molecular field simulations can give insight

into phenomena on mesoscopic scales.

 Our hybrid particle-field scheme may provide a

convenient link between particle- and field-based

models for soft matter in the future. 
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Starting Point: "Standard Model" (Recall)
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Hamiltonian: 

- Gaussian chains:

- Interaction energy:                                     with

- Incompressibility constraint: 
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For simplicity: Single component copolymer melt

Melt of AB diblock copolymers  with A-monomer fraction f

Monomer densities: 



SCF Equations in a Nutshell II

Independent copolymer chains in the field WA/B(r)
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Define segment dependent field:

 Single chain partition function

Monomer density distribution:



SCF Equations in a Nutshell I

Basic idea (intuitive picture):

Chains are treated as independent paths in an average

(self-consistent) field created by the other chains.
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for convenience)



Tasks along the way

 Evaluate single-chain partition functionQ 

of chains in the external fields WA/B

 Evaluate average densities A/B(r)

 Evaluate fields Wj :

Trick: Feynman-Kac formula

 Define propagator G(r0,r1,s): Restricted partition function

for chains of length s with end monomers at ri

 G(r0,r1, s) satisfies diffusion equation → can be evaluated.

 Using G(r0,r1), calculate Q  and densities A/B(r).

Practical Implementation I
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More specifically

 Define partial partition functions:  

q(r,s) = dr0 G(r0,r,s)   and q+(r,s) = dr1 G(r,r1,N-s) 

 Diffusion equations

with q(r,0) = q+(r,0) = 1

 Full partition function:   Q = dr q(r,N) = dr q+(r,N) 

Densities:

Practical Implementation II
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Structure of a typical (simple) SCF program

Starting from given density profiles and guess for 

1) Calculate fields

2) Solve diffusion equations for q(r,s), q+ (r,s)

3) Calculate single chain partition functionQ

4) Calculate 'new' density profiles

5) Check whether SCF equations are fulfilled within

the desired accuracy. 

If No: New guess for densities and ; go back to 1)

If Yes: Stop – You made it

Practical Implementation III
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 Efficient solution of the diffusion equation

 Direct real space integration schemes

(Crank-Nicholson, Dufort-Frankel,…)

 Pseudo-spectral split operator scheme

(mixed Fourier space/real space scheme)

 Full solution in Fourier space

 Iterative solution of SCF equations

 Direct iteration, mix old and new densities with factor 

 Somewhat more refined: Anderson mixing

 Newton Raphson method (requires Jacobians)

 Broyden method

Numerical Issues



Derivation II: Field-Theoretic Approach 

     exp -
A B A B

i

W W

 

    D D D D D FZ

Rewrite

  

d  d   

                  - d   1  ln

A B j j

j

A B

C N W

V


     


      
 

 



r r

r

F

Q
n

 Saddle point approximation is good, if C is large.

with :  Ginzburg parameter0
C

N




Analysis of saddle point approximation: 



Diffusive dynamics in external flow v(r)

Dynamic Density Functional Theory
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Lij (r,r'): Generalized mobility (kinetic Onsager coefficient)

i (r,t):   Gaussian white noise ( <i (r,t)> = 0 )

- Mean-field dynamics: i (r,t) ≡ 0 

- Fluctuating dynamics: 'Fluctuation Dissipation Theorem'

→ Ensures distribution P[] ~ exp(-F[]) at equilibrium.
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Experimental Example

(Han,Yu,Du,Wei, JACS 2010

ABA amphiphilic triblocks)



When do complex micelles form?

Consider formation process of cage micelles

⇝ Involves unperturbed growth over long time period

Requirements:

 Growth pathway

 Little interaction with other nuclei

↝ Parameter region close to CMC/Spinodal



First test: Homopolymers in thin films

0 8-8

z [Rg]

0

3

-4

(z)

Chemical potential

difference

(10.000 chains, N=20

V= (8*8*16) Rg
3 )

Slice (particle chains only)


