Neutrino Oscillations and CP and/or T Violation

Stephen Parke

Borislab

with H. Minakata and H. Nunokawa

Outline:

- Leptonic CP/T Violation
- The Anatomy of the Bi-Probability Plots
- Parameter Degeneracies:

 $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\nu_{\mu} \rightarrow \nu_{e}$

- JHF/NuMI Complementarity
- Summary

KITP, Santa Barbara, March 5, 2003.

Boris loves \cdots

- Physics especially B's and Nu's
- Chocolate !!!
- Puzzles:
- *e.g.*

How many zeros appear at the end of One Million Factorial ???

(one quarter million minus a few)

This is base 10,

What about base 16 ???

3 active flavors

(but can be easily modified to accommodate 3+1)

$$|
u_{lpha}
angle = \sum_{i} U_{lpha i} |
u_i
angle$$

The parameterization used for the unitary MNS matrix, U, is

$$egin{array}{cccc} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \ -c_{23}s_{12} - s_{13}s_{23}c_{12}e^{i\delta} & c_{23}c_{12} - s_{13}s_{23}s_{12}e^{i\delta} & c_{13}s_{23} \ s_{23}s_{12} - s_{13}c_{23}c_{12}e^{i\delta} & -s_{23}c_{12} - s_{13}c_{23}s_{12}e^{i\delta} & c_{13}c_{23} \ \end{array}$$

where $c_{jk} \equiv \cos \theta_{jk}$ and $s_{jk} \equiv \sin \theta_{jk}$.

The primary element of interest here is

$$|U_{e3}|^2$$
 or $\sin^2 2\theta_{13}$
and δ .

Leptonic CP and T Violation in Oscillations

IN GENERAL (in vacuum): CP Violation:

$$\alpha \neq \beta \quad P(\nu_{\alpha} \to \nu_{\beta}) \neq P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$

T Violation:

$$\begin{array}{ll} \alpha \neq \beta & P(\nu_{\alpha} \to \nu_{\beta}) \neq P(\nu_{\beta} \to \nu_{\alpha}) \\ \text{and} & P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}) \neq P(\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}) \end{array}$$

CPT Violation:

any $\alpha, \beta \ P(\nu_{\alpha} \to \nu_{\beta}) \neq P(\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha})$

Amplitude for $\nu_{\mu} \rightarrow \nu_{e}$

$$a_{\mu \to e} \equiv \left[2U_{\mu 3} U_{e3}^* e^{i \frac{\delta m_{31}^2 L}{4E}} \sin \frac{\delta m_{31}^2 L}{4E} + \frac{\delta m^2 L}{4E} \right]$$

$$2U_{\mu 2}U_{e2}^{*}e^{i\frac{\delta m_{21}^{2}L}{4E}}\sin\frac{\delta m_{21}^{2}L}{4E}$$

Difference in Relative Phases: Changes Interference \downarrow CP (or T) Violation used $\sum U_{\mu i} U_{ei}^* = 0$

Why Everybody is Excited!

• Maximum Allowed Asymmetry $(\delta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2})$ for $\nu_{\mu} \rightarrow \nu_{e}$ at first Oscillation Maximum in vac:

•
$$P, \ \bar{P} = |a_{\mu \to e}^{atm} + a_{\mu \to e}^{\odot}|^2 \approx (\sin \theta_{23} \sin 2\theta_{13} \pm \sqrt{P_{\odot}})^2$$

- $|P \bar{P}| \approx 4\sqrt{P_{\odot}} \sin \theta_{23} \sin 2\theta_{13}$
- $P + \bar{P} \approx 2\sin^2\theta_{23} \sin^2 2\theta_{13} + 2P_{\odot}$

Oscillation Highlights:

With three neutrinos we can access: two δm^2 , three mixing angles, θ and one CP or T violating phase, δ .

(Majorana neutrinos have two more CP phases inaccessible in oscillations. These effect neutrinoless double beta decay.)

ATMOSPHERIC: $|\delta m_{atm}^2| = 2.5 \times 10^{-3} eV^2$ $\sin^2 2\theta_{23} \approx 1.0 \qquad \theta_{23} \sim \frac{\pi}{4} = 45^\circ |U_{\mu3}|^2 \approx \frac{1}{2}$

SOLAR: LMA

$$\delta m_{\odot}^2 = +7 \times 10^{-5} eV^2$$

 $\sin^2 2\theta_{12} = 0.85$ $\theta_{12} \sim \frac{\pi}{6} = 30^\circ |U_{e2}|^2 \approx \frac{1}{4}$

REACTOR: (Chooz) $\sin^2 2\theta_{13} < 0.1$ $\theta_{13} < \frac{\pi}{20} = 9^\circ |U_{e3}|^2 < 2.5\%$

LBL ENERGIES AND BASELINES: $E_{OM}^{JHF} = 0.6 \text{ GeV} \left(\frac{L}{295 \text{ km}}\right) \left(\frac{\delta m_{atm}^2}{2.5 \times 10^{-3} \text{ eV}^2}\right)$ $E_{OM}^{NuMI} = 1.5 \text{ GeV} \left(\frac{L}{732 \text{ km}}\right) \left(\frac{\delta m_{atm}^2}{2.5 \times 10^{-3} \text{ eV}^2}\right)$

Energies $\sim 30\%$ higher are 0.8 and 2.0 GeV resp.

2nd Peak

Anatomy of the Bi-Probability Plot:

• The T-CP relation:

$$P(\nu_{\mu} \to \nu_{e}; \Delta m_{31}^{2}, \Delta m_{21}^{2}, \delta, a)$$

$$= P(\bar{\nu}_{e} \to \bar{\nu}_{\mu}; -\Delta m_{31}^{2}, -\Delta m_{21}^{2}, -\delta, a)$$

$$\approx P(\bar{\nu}_{e} \to \bar{\nu}_{\mu}; -\Delta m_{31}^{2}, +\Delta m_{21}^{2}, \pi - \delta, a)$$

•
$$\approx$$
 trade sign of δm_{12}^2 for shift by π of δ :
 $(\cdots) + \delta m_{12}^2 [(\cdots) \cos \delta + (\cdots) \sin \delta]$

$JHF \rightarrow Super-Kamiokande$

- 295 km baseline
 - Super-Kamiokande:
 - 22.5 kton fiducial
 - Excellent e/μ ID
 - Additional π^0/e ID
- Hyper-Kamiokande
 - 20× fiducial mass of SuperK
- Matter effects small
- Study using fully simulated and reconstructed data

Requires New Beamline: http://www-nu.kek.jp/jhfnu/ LOI: hep-ex/0106019

The NUMI Beamline

New Detector Required: http://www-off-axis.fnal.gov/ LOI: hep-ex/0210005

Brookhaven to Homestake OR WIPP

L= 2540 km or 2880 km

New Beamline, New Detector: http://www.neutrino.bnl.gov/ LOI: hep-ex/0205040

• JHF to SuperK energy and distance:

• NuMI energy and distance:

Parameter Degeneracies: $\nu_{\mu} \rightarrow \nu_{\mu}$

Precision Measurement of $\left| \delta m^2_{23} \right|$ and $\sin^2 2\theta_{23}$

• Mass Hierarchy and sign of δm^2_{23}

• $\sin^2 2\theta_{23} = 1 - \epsilon^2 \implies$ $2\sin^2 \theta_{23} = 1 \pm \epsilon \qquad 2\cos^2 \theta_{23} = 1 \pm \epsilon$

	- 023	- C		° 23	
$\sin^2 2\theta_{23}$	0.91	0.96	0.99	1.00	$\sin^2 2 heta_{23}$
ϵ	0.3	0.2	0.1	0.0	ϵ
$\sin^2 heta_{23}$	0.35	0.40	0.45	0.50	$\cos^2 heta_{23}$
$\cos^2 heta_{23}$	0.65	0.60	0.55	0.50	$\sin^2 heta_{23}$

$\nu_{\mu} \rightarrow \nu_{e}$ Degeneracy:

• Varying the CP or T violating phase, δ , with all other parameters fixed gives an ellipse.

• Scaling of axes by cross section, flux and detector size gives event rate - requires experimental expertise.

• Two Solutions (θ, δ) for each hierarchy if we know all other parameters.

Bi-Probability plots invented by Minakata+Nunokawa:

• At Oscillation Maximum (Kajita+Minakata+Nunokawa) same θ different δ 's - δ and $\pi - \delta$

• The different Hierarchies give almost same θ

Degeneracy for T-Violation:

• Cannot distinguish hierarchy!!!

Fogli+Lisi, Minakata+Nunokawa, Barger+Marfatia+Whisnant, Burguet-Castell+Gavela+Gome-Cadenas+Hernandez+Mena, Huber+Lindner+Winter, Minakata+Nunokawa+Parke

Using $\theta \equiv \sin \theta_{13}$ then $P(\nu_{\mu} \to \nu_{e}) = X_{\pm}\theta^{2} + Y_{\pm}\theta\cos\left(\delta + \Delta_{13}/2\right) + P_{\odot}$ $\bar{P}(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) = X_{\pm}\theta^{2} - Y_{\pm}\theta\cos\left(\delta - \Delta_{13}/2\right) + P_{\odot}$ where (Burguet-Castell et al Nucl. Phys. B608, 301 (2001)) $X_{\pm} = 4s_{23}^2 \left(\frac{\Delta_{13}}{B_{\pm}}\right)^2 \sin^2\left(\frac{B_{\mp}}{2}\right),$ $Y_{\pm} = \pm 8c_{12}s_{12}c_{23}s_{23}\left(\frac{\Delta_{12}}{aL}\right)\left(\frac{\Delta_{13}}{B_{\pm}}\right)\sin\left(\frac{aL}{2}\right)\sin\left(\frac{B_{\mp}}{2}\right)$ $P_{\odot} = c_{23}^2 \sin^2 2\theta_{12} \left(\frac{\Delta_{12}}{aL}\right)^2 \sin^2 \left(\frac{aL}{2}\right); Y_{\pm} = \pm 2\sqrt{X_{\pm}P_{\odot}}$ $\Delta_{ij} \equiv \frac{|\Delta m_{ij}^2|L}{2E}, \quad B_{\pm} \equiv |\Delta_{13} \pm aL|, \quad a = \sqrt{2}G_F N_e.$

- The X's are typically of order $1 \leftrightarrow 2$
- and the Y's of order $\pm \frac{1}{20}$
- Thus $\frac{Y^2}{X} \ll 0.01$ Complete the Square!!! (for $\nu_e \rightarrow \nu_{\tau}$ interchange s_{23} and c_{23})

Solution to these equations, ignoring terms of $\mathcal{O}(\frac{Y^2}{X})$,

$$\theta = \sqrt{\frac{P - P_{\odot}}{X_{\pm}}} - \frac{Y_{\pm}}{2X_{\pm}} \cos\left(\delta + \frac{\Delta_{13}}{2}\right)$$
$$= \sqrt{\frac{\bar{P} - P_{\odot}}{X_{\mp}}} + \frac{Y_{\mp}}{2X_{\mp}} \cos\left(\delta - \frac{\Delta_{13}}{2}\right).$$

The last equality gives us an equation of the form

 $(\cdots)\sin\delta + (\cdots)\cos\delta = (\cdots)$

which can be used to solve for δ . It involves a $\pm \sqrt{(\cdots)}$ which gives us two solutions and setting this square root to zero gives us the boundary of the allowed region.

θ 's are then obtained by substitution.

- So with 2 signs of δm^2
- and 2 possibilities for $\sin^2 \theta_{23}$
- we have in general 8 solutions.

 $\Rightarrow 2 \frac{(\theta_i - \theta_j)}{(\theta_i + \theta_j)}$ which is to be compared with

the experimental resolution.

— small corrects at other energies.

JHF $\langle P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \rangle$

A Solution:

• at Oscillation Maximum determine:

 $\sqrt{2}\sin\theta_{23}\sin\theta_{13}$

 $\sqrt{2}\cos\theta_{23}\sin\delta$

(no dependence on $\cos \delta$ at OM)

• At another E/L determine:

$\sqrt{2}\cos\theta_{23}\cos\delta$

Squaring the last two gives $\cos^2 \theta_{23}$ remember we only have to distinguish between > or < 0.5

 $\Rightarrow \theta_{13}, \ \theta_{23} \ \text{and} \ \delta$

Maybe two sets of solution since hierarchy may not be determined: See JHF v NuMI next.

POSSIBLE HELP FROM

- neutrinoless double β -decay
- Reactors: $\bar{\nu}_e \to \bar{\nu}_e$
- Nu Factory: $\nu_e \rightarrow \nu_{\tau}$

Barger+Marfatia+Whisnant hep-ph/0210428

Huber+Lindner+Winter hep-ph/0211300

Minakata+Nunokawa+Parke hep-ph/0301210

• JHF Neutrinos - NuMI Anti-Neutrinos

• Similar to JHF (NuMI) ν - JHF (NuMI) $\bar{\nu}$

• Width of the Cigars: $\left| \frac{Y_{\pm}^{N}}{X_{\pm}^{N}} - \frac{Y_{\mp}^{J}}{X_{\mp}^{J}} \right| \theta$

Since Y_{\pm} have opposite sign NO cancellation.

• JHF Neutrinos - NuMI Neutrinos

• Separation of Hierarchies!!!

• Ratio of Slopes: $\frac{X_{\pm}^{N}}{X_{-}^{N}} / \frac{X_{\pm}^{J}}{X_{-}^{J}} \approx 1 + G(\Delta_{13}^{N})(aL)|_{N} - G(\Delta_{13}^{J})(aL)|_{J}$ where $G(\Delta_{13}) \equiv 2\left[\frac{2}{\Delta_{13}} - \cot\left(\frac{\Delta_{13}}{2}\right)\right]$ is a monotonically increasing (decr) function of Δ_{13} (E). E^{J} up: larger slope ratio, E^{N} up: smaller slope ratio. • Width of Pencils $\left|\frac{Y_{\pm}^{N}}{X_{\pm}^{N}} - \frac{Y_{\pm}^{J}}{X_{\pm}^{J}}\right| \theta$ at same $\left(\frac{E}{L}\right)$ we have an identity $\frac{Y_{\pm}^{N}}{\sqrt{X_{\pm}^{N}}} = \frac{Y_{\pm}^{J}}{\sqrt{X_{\pm}^{J}}}$ implies small width.

• Separation provided $\left(\frac{E}{L}\right)_{NuMI} \leq \left(\frac{E}{L}\right)_{JHF}$

• Best Separation at Oscillation Maximum

• Better separation at same E/L. Higher E good, Larger L bad for statistics.

$\nu-\bar{\nu}$ at a Longer Baseline NuMI

• Hierarchy separation good but NOT guaranteed.

Energy Averaging:

• Energy Averaging does NOT effect separation.

SUMMARY:

 $P(\nu_{\mu} \rightarrow \nu_{e})$ from $\delta m^{2} \sim 3 \times 10^{-3} eV^{2}$ is a WONDERFUL opportunity.

• The 8 fold degeneracy issue can be solved with multiple measurements of $\nu_{\mu} \rightarrow \nu_{e}$: *e.g.*

Neutrino and Anti-Neutrino at Osc. Max. with large matter effect PLUS

Neutrino at a higher E/L with smaller matter effect is **SUFFICIENT**, if chosen carefully.

• JHF-NuMI both neutrinos is good for distinguishing the mass hierarchy provided

 $\frac{E}{L}\Big|_{NuMI} \le \frac{E}{L}\Big|_{JHF}.$

- JHF-NuMI one neutrinos and one anti-neutrinos is good for determining θ_{13} and δ . Similar to JHF-JHF and NuMI-NuMI.
- The Community needs to exploit this Opportunity Coherently !!