Probing the LSND mass scale and four neutrino mass models with a neutrino telescope

Orlando L. G. Peres

KITP & CAMPINAS

Work in collaboration with R. Zukanovich-Funchal and H. Nunokawa, hep-ph/0302039.

Probing the LSND mass scale and four neutrino mass models with a neutrino telescope – p.1/13

Wotivations of Four neutrino mass schemes: sterile neutrino

Wotivations of Four neutrino mass schemes: sterile neutrino

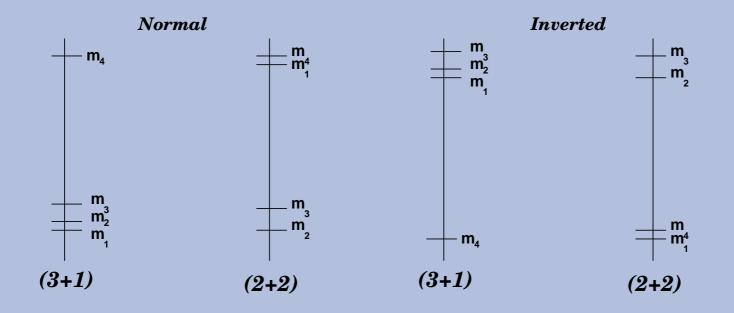
Use Large mass scale effects

- Wotivations of Four neutrino mass schemes: sterile neutrino
- Large mass scale effects
- $rac{W}{W}$ Probabilities $\nu_{\mu} \rightarrow \nu_{e}$ and $\nu_{\mu} \rightarrow \nu_{\tau}$

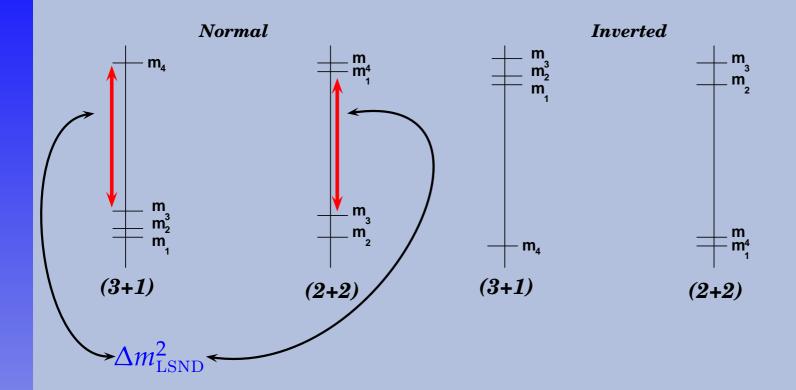
- Wotivations of Four neutrino mass schemes: sterile neutrino
- Large mass scale effects
- $rac{W}{W}$ Probabilities $u_{\mu} \rightarrow \nu_{e} \text{ and } \nu_{\mu} \rightarrow \nu_{\tau}$
- Upward-going muons and cascade events

- Wotivations of Four neutrino mass schemes: sterile neutrino
- Large mass scale effects
- $rac{W}{W}$ Probabilities $\nu_{\mu} \rightarrow \nu_{e}$ and $\nu_{\mu} \rightarrow \nu_{\tau}$
- Upward-going muons and cascade events
- Conclusions

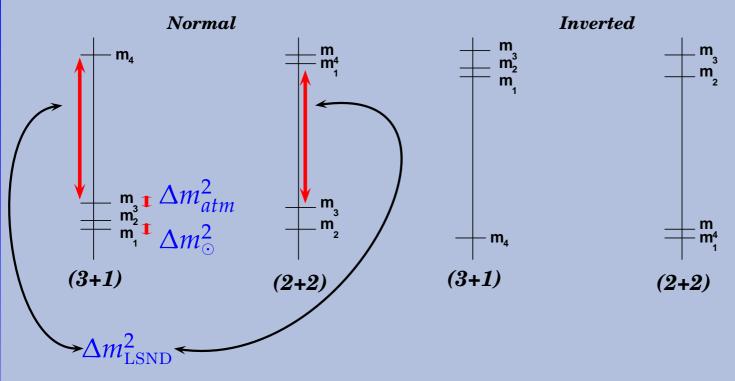
Solar data (and KAMLAND) shows that $\Delta m_{\odot}^2 \sim 7 \, 10^{-5} \, \text{eV}^2$ and $\tan^2(\theta_{\odot}) = 0.42$;


- ∛ Solar data (and KAMLAND) shows that $\Delta m_{\odot}^2 \sim 7 \, 10^{-5} \, \text{eV}^2$ and $\tan^2(\theta_{\odot}) = 0.42$;
- W Atmospheric data (and K2K) shows that $\Delta m_{\rm ATM}^2 \sim 3.0 \, 10^{-3} \, {\rm eV^2}$ and $\sin^2 2\theta_{\rm ATM} = 1.00$;

- **Solar data (and KAMLAND) shows that** $\Delta m_{\odot}^2 \sim 7 \, 10^{-5} \, \text{eV}^2$ and $\tan^2(\theta_{\odot}) = 0.42$;
- W Atmospheric data (and K2K) shows that $\Delta m_{\rm ATM}^2 \sim 3.0 \, 10^{-3} \, {\rm eV^2}$ and $\sin^2 2\theta_{\rm ATM} = 1.00$;
- **W** The LSND experiment shows indications of $\nu_{\mu} \rightarrow \nu_{e}$ appearence with a large mass scale $\Delta m_{\rm LSND}^{2} \sim 0.5 2.0 \ {\rm eV}^{2}$;


- ∛ Solar data (and KAMLAND) shows that $\Delta m_{\odot}^2 \sim 7 \, 10^{-5} \, \text{eV}^2$ and $\tan^2(\theta_{\odot}) = 0.42$;
- **W** Atmospheric data (and K2K) shows that $\Delta m_{\rm ATM}^2 \sim 3.0 \, 10^{-3} \, {\rm eV}^2$ and $\sin^2 2\theta_{\rm ATM} = 1.00$;
- **W** The LSND experiment shows indications of $\nu_{\mu} \rightarrow \nu_{e}$ appearence with a large mass scale $\Delta m_{\rm LSND}^{2} \sim 0.5 2.0 \ {\rm eV}^{2}$;
- To accomodate the three mass scales we need a sterile neutrino.

- ∛ Solar data (and KAMLAND) shows that $\Delta m_{\odot}^2 \sim 7 \, 10^{-5} \, \text{eV}^2$ and $\tan^2(\theta_{\odot}) = 0.42$;
- W Atmospheric data (and K2K) shows that $\Delta m_{\rm ATM}^2 \sim 3.0 \, 10^{-3} \, {\rm eV^2}$ and $\sin^2 2\theta_{\rm ATM} = 1.00$;
- **W** The LSND experiment shows indications of $\nu_{\mu} \rightarrow \nu_{e}$ appearence with a large mass scale $\Delta m_{\rm LSND}^{2} \sim 0.5 2.0 \ {\rm eV}^{2}$;
- To accomodate the three mass scales we need a sterile neutrino.
- Until now, no experiment ruled out or con£rm the LSND experiment; Wait for Mini-BooNE


4 neutrino mass schemes

4 neutrino mass schemes

4 neutrino mass schemes

6 mixing angles and 3 mass differences

For the solar pair

 $\cos(heta_{\odot}) \mathbf{v}_{e} - \sin(heta_{\odot}) \mathbf{\tilde{v}}$

 $-\cos(\theta_{\odot})\boldsymbol{\nu}_{e}+\sin(\theta_{\odot})\boldsymbol{\tilde{\nu}}$

where $\tilde{v} = \sqrt{1 - \eta_s} v_{\tau} + \sqrt{\eta_s} v_s$. In another words, η_s is the sterile content in the solar pair. In the same way we can de£ne a parameter d_s that describe the sterile admixture in the atmospheric pair.

For the short baseline experiments for the v_e channel, in the 2+2 mass schemes

$$\sqrt{1-d_e} \nu_e - \sqrt{d_e} \nu_\rho$$

$$\sqrt{d_e} \nu_e + \sqrt{1-d_e} \nu_\rho$$
where $\nu_\rho = \sqrt{d_s} \nu_s + \sqrt{1-d_s} \nu_\tau$. Similar for ν_μ
channel, $d_e \to d_\mu$.
For the 3+1 mass schemes we replace $d_e \to 1-d_e$.

Using the data from solar+atmospheric and short baseline experiments we have

W For the 2+2 model, $1 - d_e < 0.02$ and d_μ is very small. And for the global £t we have $d_s \sim 0.5 - 1$ or $d_s \sim 0 - 0.3$

Using the data from solar+atmospheric and short baseline experiments we have

- W For the 2+2 model, $1 d_e < 0.02$ and d_μ is very small. And for the global £t we have $d_s \sim 0.5 1$ or $d_s \sim 0 0.3$
- W For the 3+1 model, $d_e < 0.02$ and $d_µ$ is very small. And for the global £t we have $1 - η_s \sim 0.4$ is small.

In the standard 3ν generation scenario we have for E > 50 GeV,

In the standard 3ν generation scenario we have for E > 50 GeV,

$$\begin{aligned} P(\boldsymbol{\nu}_{\mu} \to \boldsymbol{\nu}_{\mu}) &\sim & 1 - P(\boldsymbol{\nu}_{\mu} \to \boldsymbol{\nu}_{\tau}) \\ P(\boldsymbol{\nu}_{\mu} \to \boldsymbol{\nu}_{\tau}) &\sim & \sin^{2} 2\theta_{\text{ATM}} \sin^{2}(\Delta m_{\text{ATM}}^{2} L/4E) \\ P(\boldsymbol{\nu}_{\mu} \to \boldsymbol{\nu}_{e}) &\sim & \mathbf{0} \ \mathcal{O}(U_{e3}^{2}) \ \text{corrections} \end{aligned}$$

Solution Solution is well as a second conversion $ν_μ → ν_e$ at all and very small $ν_μ → ν_τ$ oscillation.

In the four neutrino scenario

In the four neutrino scenario

sterile admixture

In the four neutrino scenario

sterile admixture

Already tested in solar and atmospheric data

In the four neutrino scenario

sterile admixture

Already tested in solar and atmospheric data

large mass scale effects

In the four neutrino scenario

sterile admixture

Already tested in solar and atmospheric data

large mass scale effectsWot tested ! Average out effects

In the four neutrino scenario

sterile admixture

Already tested in solar and atmospheric data

large mass scale effects
Wot tested ! Average out effects

We expect

 $\mathsf{P}(\nu_{\mu} \rightarrow \nu_{\tau}) \sim \sin^2(2\theta_{\mu\tau}^{eff}) \sin^2(\Delta m_{\text{LSND}}^2 L/4E)$ vacuum oscillations.

In the four neutrino scenario

sterile admixture

Already tested in solar and atmospheric data

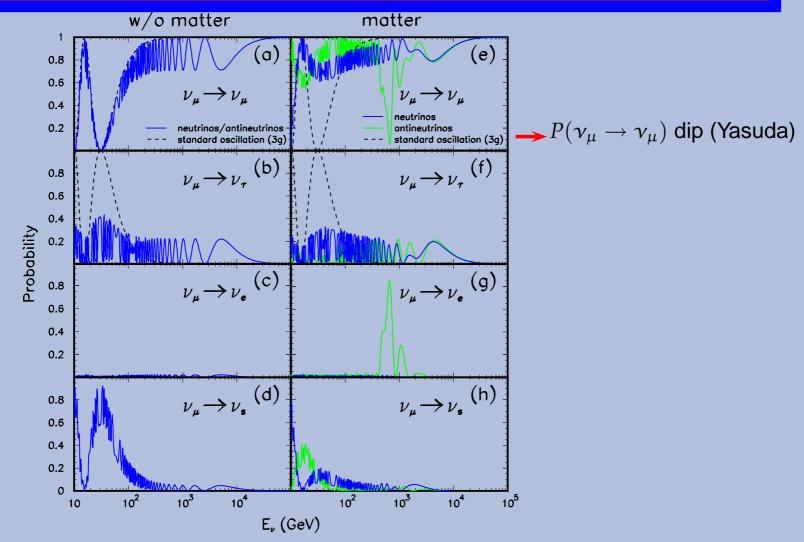
large mass scale effects
Wot tested ! Average out effects

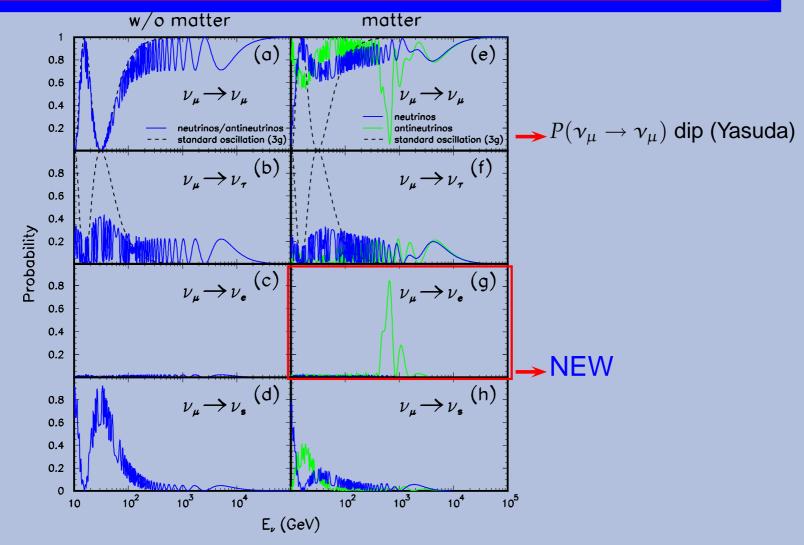
We expect

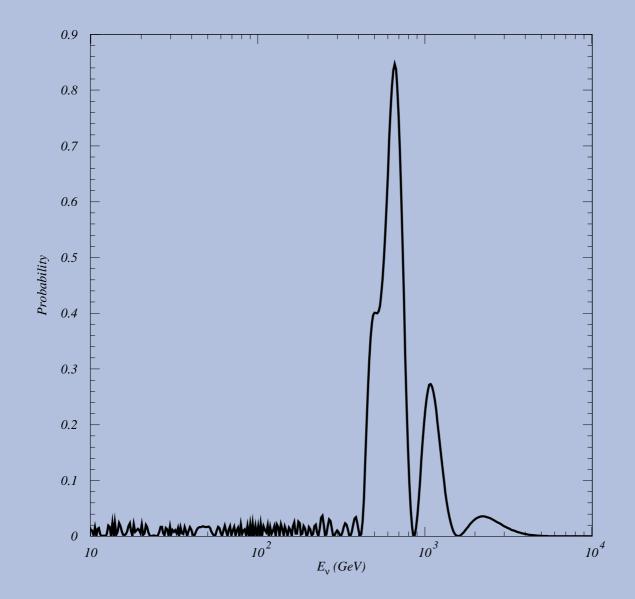
 $\mathsf{P}(\nu_{\mu} \rightarrow \nu_{\tau}) \sim \sin^2(2\theta_{\mu\tau}^{eff}) \sin^2(\Delta m_{\text{LSND}}^2 L/4E)$ vacuum oscillations.

Beside that, we can have MSW effects, at TeV energy range, for the $\nu_{\mu} \rightarrow \nu_{e}$ channel

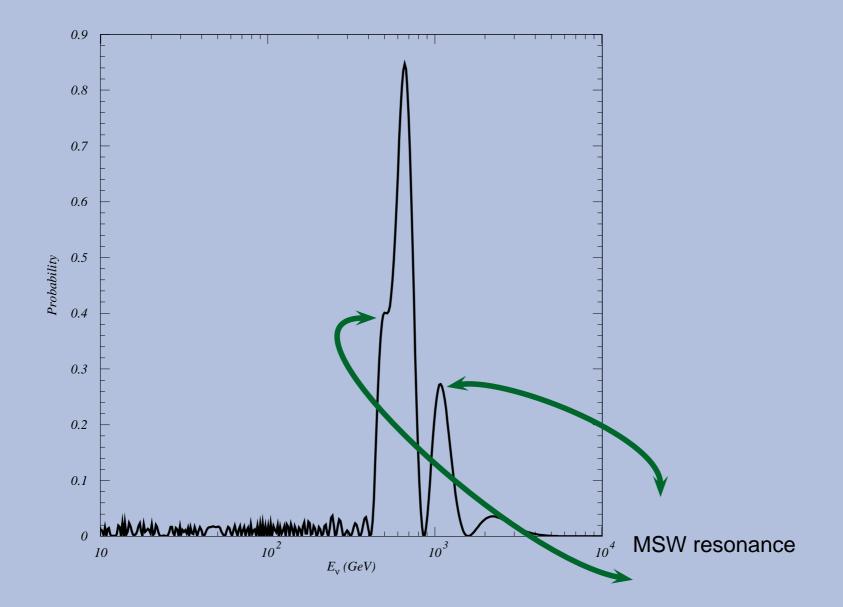
$$E_{\nu}^{\mathrm{R}} \sim 1.7 \; \mathrm{TeV} \times \left(\frac{|\Delta m_{\mathrm{LSND}}^2|}{0.5 \, \mathrm{eV}^2} \right) \times \left(\frac{2.0 \, \mathrm{g/cc}}{Y_e \rho} \right)$$

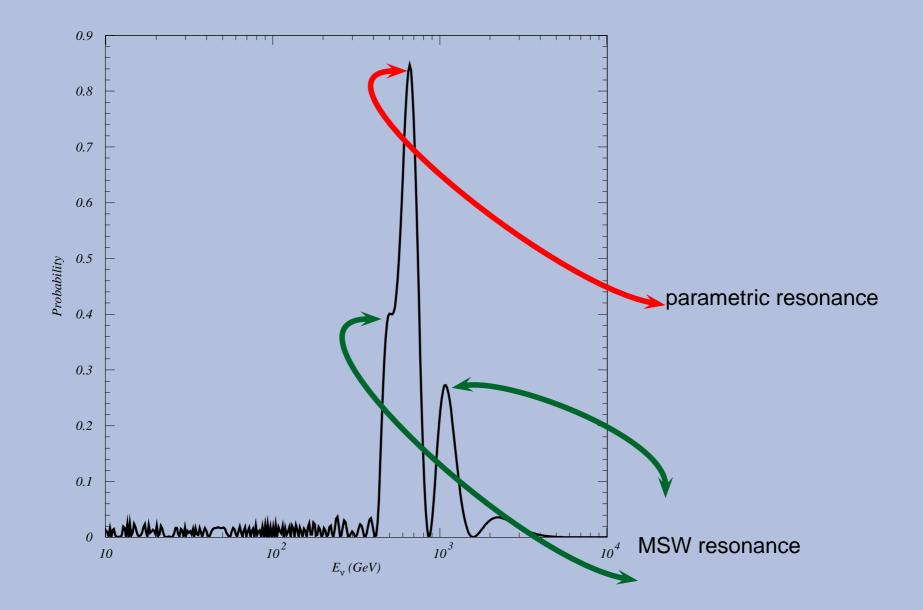

In the four neutrino scenario


sterile admixture Already tested in solar and atmospheric data large mass scale effects Wot tested ! Average out effects We expect $P(\nu_{\mu} \rightarrow \nu_{\tau}) \sim \sin^2(2\theta_{\mu\tau}^{eff}) \sin^2(\Delta m_{LSND}^2 L/4E)$ vacuum oscillations. Beside that, we can have MSW effects, at TeV energy range, for the $\nu_{\mu} \rightarrow \nu_{e}$ channel


$$E_{\nu}^{\mathrm{R}} \sim 1.7 \ \mathrm{TeV} \times \left(\frac{|\Delta m_{\mathrm{LSND}}^2|}{0.5 \, \mathrm{eV}^2} \right) \times \left(\frac{2.0 \, \mathrm{g/cc}}{Y_e \rho} \right)$$

The large mass scale induce v_e appearence and v_{τ} appearence.


Probing the LSND mass scale and four neutrino mass models with a neutrino telescope – p.9/13



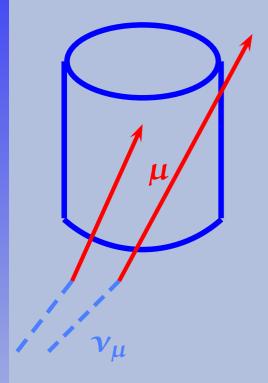
Probing the LSND mass scale and four neutrino mass models with a neutrino telescope – p.10/15

Probing the LSND mass scale and four neutrino mass models with a neutrino telescope – p.10/13

Probing the LSND mass scale and four neutrino mass models with a neutrino telescope - p.10/18

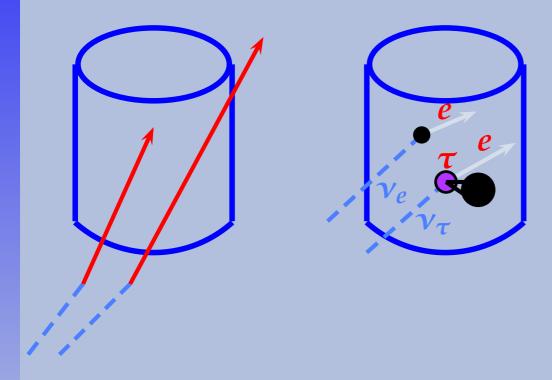
 $\pi^+ o \ \mu^+ \ +
u_\mu$

 $\pi^+ \rightarrow \mu^+ + \nu_\mu$


 $\pi^+ \rightarrow \underbrace{\mu^+}_{\mu^+} + \nu_{\mu}$ $\mu^+ \rightarrow e^+ + \bar{\nu}_{\mu} + \nu_e$

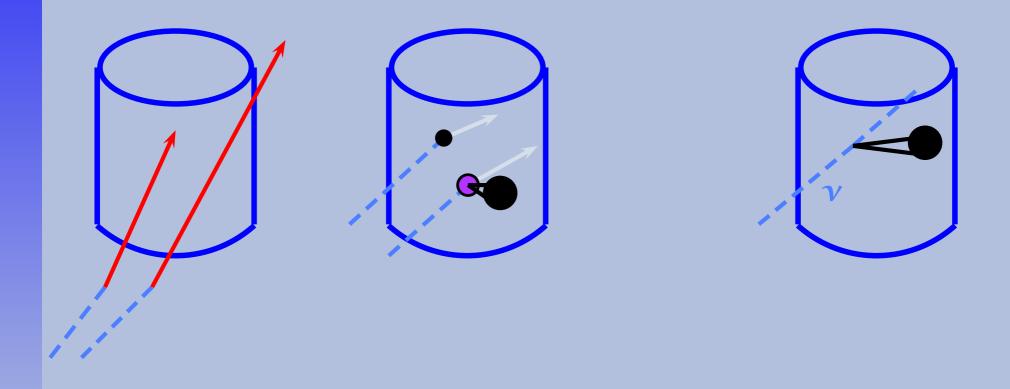
$\pi^{+} \rightarrow \underbrace{\mu^{+}}_{\mu^{+}} + \nu_{\mu}$ $\mu^{+} \rightarrow e^{+} + \bar{\nu}_{\mu} + \nu_{e}$ At low energy, $\frac{\phi(\nu_{\mu} + \bar{\nu}_{\mu})}{\phi(\nu_{e} + \bar{\nu}_{e})} \sim 2$

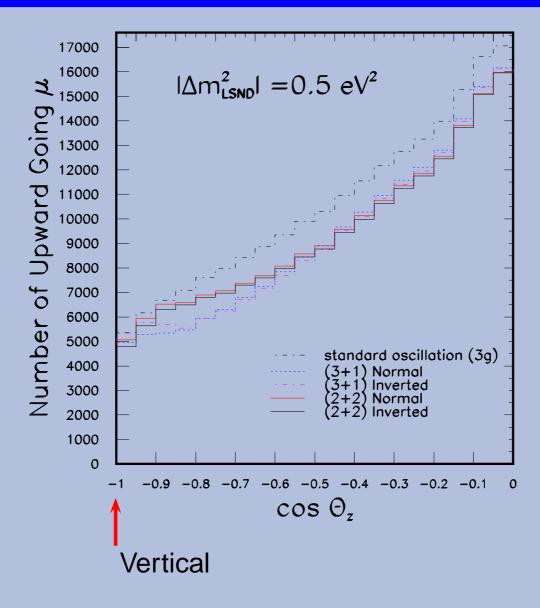
$$\begin{aligned} \pi^{+} \rightarrow \underbrace{\mu^{+}}_{\mu^{+}} + \nu_{\mu} \\ \mu^{+} \rightarrow e^{+} + \bar{\nu}_{\mu} + \nu_{e} \\ \text{At low energy,} \quad \frac{\phi(\nu_{\mu} + \bar{\nu}_{\mu})}{\phi(\nu_{e} + \bar{\nu}_{e})} \sim 2 \\ \text{At high energy,} \quad \mu^{+} \underbrace{X}_{e^{+}} + \bar{\nu}_{\mu} + \nu_{e} \\ \text{and always ,} \quad \phi(\nu_{\tau} + \bar{\nu}_{\tau})/\phi(\nu_{\mu} + \bar{\nu}_{\mu}) \sim 10^{-4} - 10^{-5} \end{aligned}$$


We have a almost pure ν_{μ} beam

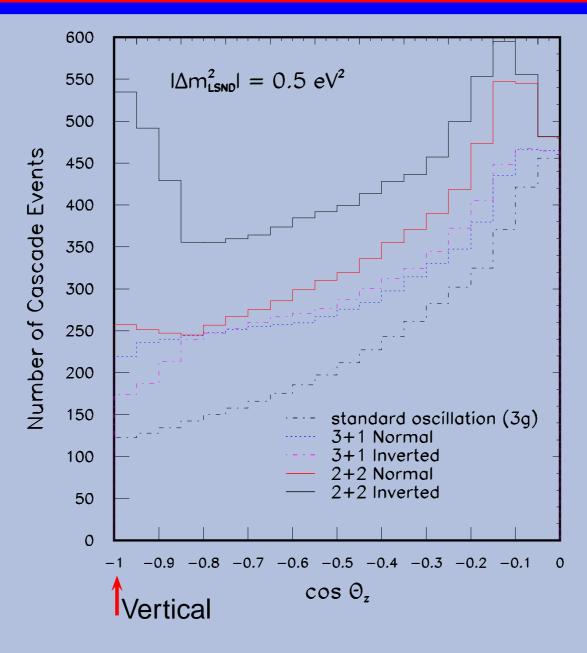
Upward Muons

Upward Muons


Cascade Events-CC


Upward Muons

Cascade Events-CC


Cascade Events-NC

Upward going μ

Cascade events

Conclusions

Solution Series Se

Conclusions

Solution Series Se

Conclusions

Solution Series Se

- Solution $\Delta m_{\rm LSND}^2$ by the four neutrino mass scheme.