

Dr. Todd Thompson, KITP & UC Berkeley (KITP Neutrinos Program 2/25/03)

Dr. Todd Thompson, KITP & UC Berkeley (KITP Neutrinos Program 2/25/03)

Motivation:

Suggests a universal r-process site that acts early in the chemical enrichment history of the galaxy.

(Burris et al. 2000; Cayrel et al. 2001)

What is the astrophysical site?

- Protoneutron Star Winds
 - Rate ~ 1 every 50 yr
 - Required mass ejected ~ 10^{-5} - 10^{-6} M_{sun}
- Neutron Star-Neutron Star Mergers
 - Rate ~ 1 every 10^5 yr,
 - Required mass ejected ~ $10^{-1} M_{sun}$

- Both are neutron rich

What are the physical characteristics of neutrino-driven winds?

Are these conditions suitable for a robust r-Process?

Entropy, dynamical timescale, and electron fraction

Thompson, Burrows, & Meyer 2001

(Paczyński & Prószyński 1986; Duncan et al. 1986)

Transonic neutrino-driven winds from 1.4M_{sun} R=10km neutron stars fail to produce 3rd-peak rprocess nucleosynthesis

Qian & Woosley '94; Otsuki et al. '00; Thompson et al. '01; Wanajo et al. '01; Sumiyoshi et al. '00; but, see Terasawa et al. '02

Magnetic Protoneutron Star Winds

- Neutrino-driven winds from PNSs with magnetarlike field strengths are magnetically dominated.
- In regions where the field dominates P, closed loops will form.
- These loops may trap matter temporarily, leading to higher asymptotic entropy.
- This entropy enhancement may be sufficient for robust r-process nucleosynthesis.

- Complex field topologies
- MHD instabilities
- Convection & Rotation footpoint motion
- Spindown

The Future

- Dynamical models of explosion, wind emergence, and evolution (reverse shocks, fallback, etc)
- 2D & 3D models of neutrino-driven magnetohydrodynamic protoneutron star winds.

The Fundamental Equations

$$\frac{dv}{dr} = \frac{v}{2r} \left[\frac{v_e^2}{y^2} \left(\frac{1 - c_s^2/c^2}{c_s^2 - v^2} \right) - 4c_s^2 \left(\frac{1 - v^2/c^2}{c_s^2 - v^2} \right) \right] + \frac{D}{C_v T} \frac{\dot{q}}{y} \left(\frac{1 - v^2/c^2}{c_s^2 - v^2} \right) \\
\frac{dp}{dr} = \frac{2\rho}{r} \left(\frac{v^2 - v_e^2/4y^2}{c_s^2 - v^2} \right) + \frac{\rho}{vy} \frac{D}{C_v T} \frac{\dot{q}}{c_s^2 - v^2} \\
\frac{dT}{dr} = \frac{2}{r\rho} \frac{D}{C_v} \frac{P + \varepsilon}{c^2} \left(\frac{v^2 - v_e^2/4y^2}{c_s^2 - v^2} \right) + \frac{\dot{q}}{C_v (vy)} \left(\frac{(1 - D/c^2)c_r^2 - v^2}{c_s^2 - v^2} \right) \\
\text{where} \quad D = c^2 \frac{T}{\varepsilon + P} \frac{\partial P}{\partial T} \Big|_{\rho} \quad \text{and} \quad y = \gamma \left(1 - 2GM/rc^2 \right)^2$$

