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Bulk Metallic Glasses

Douglas Hoffman, E-Science News 1998

• Unique material with 
promising properties, 
but disordered 
structure.	



• High strength.	



• High formability due 
to lack of shrinkage 
upon solidification.
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Shear Bands in Metallic Glass

Quasistatic Fracture Specimen  
Mukai, Nieh, Kawamura, Inoue, Higashi  (2002)

strain localization (shear banding) is the primary failure mode

Electron Micrograph of Shear Bands Formed in 
Bending Metallic Glass 

Hufnagel, El-Deiry, Vinci  (2000)
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Can we use examples of 
shear banding to validate 
the effective temperature 

STZ theory against MD and 
experimental realizations? 



Effective Temperature STZ Theory

• Is there an intensive thermodynamic property (called χ here) that 
controls the number density of deformable regions (STZs)?	



!
• This would be an “effective temperature” that characterizes 

structural degrees of freedom quenched into the glass.
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Effective Temperature STZ Theory

• Is there an intensive thermodynamic property (called χ here) that 
controls the number density of deformable regions (STZs)?	



!
• This would be an “effective temperature” that characterizes 

structural degrees of freedom quenched into the glass.
T
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  disordering
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Effective Temperature STZ Theory

• Is there an intensive thermodynamic property (called χ here) that 
controls the number density of deformable regions (STZs)?	



!
• This would be an “effective temperature” that characterizes 

structural degrees of freedom quenched into the glass.
T

mechanical	
  disordering

T

thermal	
  annealing
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Development of a Shear Band

  

10% 20% 50% 100%
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Y Shi, MB Katz, H Li, MLF, PRL, 98, 185505 (2007)

Y. Shi, M.B. Katz, H. Li, MLF, Phys. Rev. Lett., 98, 185505 (2007)



Relating χ to the microstructure
• Consider a linear relation between the χ parameter 

and the local internal energy	



!

!

!

• Is there an underlying scaling?

  C1χ = PE − PE0

    
!ε pl = e−1/ χ f s( )

   c0
!χ = 2s !ε pl χ

∞
− χ( ) −κe−β χ

    
ln
!ε pl y( )
!εb

"

#
$
$

%

&
'
'
=

1
χb

−
C1

PE − PE0

    
ln
!ε pl y( )
!εb

"

#
$
$

%

&
'
'
−

1
χ
∞
− r !εb

−1 = −
C1

PE − PE0
   2s !εb χ

∞
− χb( ) =κe−β χb

9Y. Shi, M.B. Katz, H. Li, MLF, Phys. Rev. Lett., 98, 185505 (2007)

  C1χ = PE − PE0
-eZ

    

!ε pl y( )
!εb

= e1/ χb −1/ χ y( )eZ eZ

    

!ε pl y( )
!εb

= e1/ χb −1/ χ y( )

/eZ

eZ

eZ



Scaling verifies that    varies as 

• Assuming,	

 	

 	

  , eZ =1.9ε

Y. Shi, M.B. Katz, H. Li, MLF, Phys. Rev. Lett., 98, 185505 (2007) 10
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Numerical Results 
M. Lisa Manning and J.S. Langer, PRE, 76, 056106(2007)

• These equations closely 
reproduce the details of the 
strain rate and structural profiles 
during band formation
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Stability Analysis 
Manning, Langer and Carlson, PRE, 76, 056106(2007)

• Stability analysis of the equations 
indicates linear instability during a 
portion of the loading curve.	



• Both the initial 𝛘 and the size of 
perturbations are important for 
determining strain localization.
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2D Implementation 
Chris Rycroft, Harvard Univ.
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2D Implementation 
Chris Rycroft, Harvard Univ.
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Cross Validation of MD and  
Stochastic Continuum Model
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H:  thickness of the crystalline layer 
L: thickness of glassy layer
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MD Simultion of Lamellar Composite 
Pengfei Guan
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1D Modeling of Lamellar Composite 
Adam Hinkle
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2d Modeling of Lamellar Composite 
Code: Chris Rycroft, Harvard; Sim: Adam Hinkle, JHU
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2d Modeling of Lamellar Composite 
Code: Chris Rycroft, Harvard; Sim: Adam Hinkle, JHU
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Transient Shear Banding in a Simple Yield Stress Fluid 
Divoux, Tamarii, Barentin, Manneville 

PRL 104, 208301 (2010)

18



Transient Shear Banding in a Simple Yield Stress Fluid 
Divoux, Tamarii, Barentin, Manneville 

PRL 104, 208301 (2010)

19



Transient Shear Banding in a Simple Yield Stress Fluid 
Divoux, Tamarii, Barentin, Manneville 

PRL 104, 208301 (2010)

20



Transient Shear Banding in a Simple Yield Stress Fluid 
Divoux, Tamarii, Barentin, Manneville 

PRL 104, 208301 (2010)

20

• Shear band nucleates at inner wall
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• Shear band nucleates at inner wall

• Shear band steadily broadens



Transient Shear Banding in a Simple Yield Stress Fluid 
Divoux, Tamarii, Barentin, Manneville 

PRL 104, 208301 (2010)
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• Shear band nucleates at inner wall

• Shear band steadily broadens

• Before shear band propagates across entire cell, 
band destabilizes and homogeneous flow sets in.



Transient shear banding in time-dependent fluids 
Illa, Puisto, Lehtinen, Mohtaschemi, Alava, PRE 87, 022307 (2013)
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0

• Develops transient shear band	



• Fluidization time depends 
trivially on k	



• No destabilization of band	



• System once fluidized will not 
localize again on second sweep



Effective Temperature Equations of Motion 
(Athermal Limit)
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• Recall that in the STZ formulation the function f(s) is derived 
from the microscopic equations for the STZ flips.	



• Here we will choose f(s) to be consistent with the steady state 
rheology, such that we recover the Herschel-Bulkley behavior.
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Results of Simple Model
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• Shear band quickly reaches steady state in 
center and begins to broaden.	



• Before shear band sweeps across system the 
entire system fluidizes.
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Results of Simple Model
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Results of Simple Model
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• Shear band quickly reaches steady state in 
center and begins to broaden.	



• Before shear band sweeps across system the 
entire system fluidizes.
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Analogy to F-KPP Equations
• This is a variant of the Fisher-

Kolmogorov, Petrovsky, Piscouno 
(F-KPP) equation used in models 
of solidification.	



!

!

• In our case we have a strongly 
non-linear function on the RHS 
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Initial Model
Successes 

• Shear band growth and destabilization are 
both observed.	



• The stress vs. time curve is reasonably close.	



Deficiencies 

• Like Illa, once fluidized the system is in a 
structural steady state and cannot band again.	



• The scaling of fluidization time is trivial 
(𝝉f~𝜸-1)
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Transient Shear Banding in a Simple Yield Stress Fluid 
Divoux, Tamarii, Barentin, Manneville 

PRL 104, 208301 (2010)
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Effective Temperature Equations of Motion 
(Rate Dependent Disorder)
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• We make the degree of disorder explicitly dependent on the 
steady state shear rate. This permits low 𝝌 solutions at low 
rates of shear.	



• Again we will choose f(s) to be consistent with the steady 
state rheology, such that we recover the Herschel-Bulkley 
behavior.	



• Form for 𝝌∞ taken from Manning, Daub, Langer and Carlson, 
PRE 79, 016110 (2009).
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Effective Temperature Equations of Motion 
(Rate Dependent Disorder)

30

• Simultaneous broadening of band and fluidization outside.	



• Can initialize the material at a value of 𝝌 corresponding to the 
low rate steady state, and induce shear band by driving at 
higher rates
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Effective Temperature Equations of Motion 
(Rate Dependent Disorder)
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• Simultaneous broadening of band and fluidization outside.	



• Can initialize the material at a value of 𝝌 corresponding to the 
low rate steady state and induce shear band by driving at 
higher rates
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Effective Temperature Equations of Motion 
(Rate Dependent Disorder)
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• Simultaneous broadening of band and fluidization outside.	



• Can initialize the material at a value of 𝝌 corresponding to the 
low rate steady state and induce shear band by driving at 
higher rates
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Rate Dependent Disorder Model
Successes 

• Shear band growth and destabilization are both observed.	



• The stress vs. time curve is reasonably close.	



• Can initialize the system at low rate and shear band at 
high rate.	



Deficiencies 

• Fluidization time varies like shear rate to the -0.5. This 
reflects more strain needed to reach higher disorder at 
higher rates.	



• More complex functional form of the structural 
dependence of the yield stress? 33



Conclusions
• Modeling shear banding provides a challenge for 

constitutive theories.	



• MD simulation indicates that predicting nucleation of 
shear bands in metallic glasses requires correctly 
characterizing fluctuations in the structure and that the 
nucleation process is sensitive to the dimensionality of the 
mechanics problem.	



• The STZ effective temperature phenomenology produces 
a transition from shear band broadening to fluidization 
that matches the phenomenology in yield stress fluids.	



• Introducing a rate dependent steady state 𝝌 permits 
shear banding on repeated loadings.	



• Missing ingredient relating rate of fluidization to shear 
rate requires further study. Perhaps this arises due to 
structure dependence of yield stress. 
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