‘Sloppy Model’ Nonlinear Fits: Signal Transduction to Differential Geometry

JPS, Mark Transtrum, Ben Machta, Ricky Chachra, Lorien Hayden, Alex Alemi, Isabel Kloumann, Colin Clement, Kevin Brown, Ryan Gutenkunst, Josh Waterfall, Paul Ginsparg, Chris Myers, …

Figure 5. ΛCDM model: 68.3%, 95.4%, and 99.7% confidence regions of the $(\Omega_m, \Omega_\Lambda)$ plane from SNe Ia combined with the constraints from BAO and CMB. The left panel shows the SN Ia confidence region only including statistical errors while the right panel shows the SN Ia confidence region with both statistical and systematic errors.

Figure 6. wCDM model: 68.3%, 95.4%, and 99.7% confidence regions in the (Ω_m, w) plane from SNe Ia BAO and CMB. The left panel shows the SN Ia confidence region for statistical uncertainties only, while the right panel shows the combination of cosmological probes very powerful for investigating the nature of dark energy.
Fitting Decaying Exponentials

Classic ill-posed inverse problem

Given Geiger counter measurements from a radioactive pile, can we recover the identity of the elements and/or predict future radioactivity? Good fits with bad decay rates!

$y(A, \gamma, t) = A_1 e^{-\gamma_1 t} + A_2 e^{-\gamma_2 t} + A_3 e^{-\gamma_3 t}$

$C(\vec{\theta}) = \sum_{i=1}^{N_D} \frac{(y(\vec{\theta}) - y_i)^2}{\sigma_i^2}$

$32P, 35S, 125I$
Fitting Decaying Exponentials

Classic ill-posed inverse problem

Given Geiger counter measurements from a radioactive pile, can we recover the identity of the elements and/or predict future radioactivity? Good fits with bad decay rates!

\[C(\theta) = \sum_{i=1}^{N_D} \frac{(y(\theta) - y_i)^2}{\sigma_i^2} \]

Ensemble: Interpolation

\[y(A, \gamma, t) = A_1 e^{-\gamma_1 t} + A_2 e^{-\gamma_2 t} + A_3 e^{-\gamma_3 t} \]

6 Parameter Fit

\[^{32}P, ^{35}S, ^{125}I \]
Fitting Decaying Exponentials

Classic ill-posed inverse problem

Given Geiger counter measurements from a radioactive pile, can we recover the identity of the elements and/or predict future radioactivity? Good fits with bad decay rates!

6 Parameter Fit

$y(A,\gamma,t) = A_1 e^{-\gamma_1 t} + A_2 e^{-\gamma_2 t} + A_3 e^{-\gamma_3 t}$

$C(\vec{\theta}) = \sum_{i=1}^{N_D} \frac{(y(\vec{\theta}) - y_i)^2}{\sigma_i^2}$

Ensemble: Extrapolation

32P, 35S, 125I
Ensemble of Models

Kevin Brown

We want to consider not just minimum cost fits, but all parameter sets consistent with the available data. New level of abstraction: *statistical mechanics in model space.*

Cost is least-squares fit

\[C(\vec{\theta}) = \frac{1}{2} \sum_{i=1}^{N_D} \frac{(y(\vec{\theta}) - y_i)^2}{\sigma_i^2} \]

Boltzmann weights \(\exp(-C/T) \)

Don’t trust predictions that vary

\[H_{ij} = \frac{\partial^2 C}{\partial \theta_i \partial \theta_j} \]

\(O \) is chemical concentration \(y(t_i) \), or rate constant \(\theta_n \)...
Ensemble of Models

Kevin Brown

We want to consider not just minimum cost fits, but all parameter sets consistent with the available data. New level of abstraction: *statistical mechanics in model space*.

Don’t trust predictions that vary

Cost is least-squares fit

\[
C(\vec{\theta}) = \frac{1}{2} \sum_{i=1}^{N_D} \frac{(y(\vec{\theta}) - y_i)^2}{\sigma_i^2}
\]

Boltzmann weights \(\exp(-C/T) \)

\[
\langle O \rangle = \frac{1}{N_E} \sum_{i=1}^{N_E} O(\vec{\theta}_i)
\]

\[
\sigma_O^2 = \langle O^2(\vec{\theta}) \rangle - \langle O(\vec{\theta}) \rangle^2
\]

\(O \) is chemical concentration \(y(t_i) \), or rate constant \(\theta_n \)…
Ensemble of Models

Kevin Brown

We want to consider not just minimum cost fits, but all parameter sets consistent with the available data. New level of abstraction: statistical mechanics in model space.

Don’t trust predictions that vary

Cost is least-squares fit

\[C(\vec{\theta}) = \frac{1}{2} \sum_{i=1}^{N_D} \frac{(y(\vec{\theta}) - y_i)^2}{\sigma_i^2} \]

Boltzmann weights \(\exp(-C/T) \)

\[\langle O \rangle = \frac{1}{N_E} \sum_{i=1}^{N_E} O(\vec{\theta}_i) \]

\[\sigma_O^2 = \langle O^2(\vec{\theta}) \rangle - \langle O(\vec{\theta}) \rangle^2 \]

\(H_{ij} = \partial^2 C / \partial \theta_i \partial \theta_j \)

O is chemical concentration \(y(t_i) \), or rate constant \(\theta_n \)…
Parameter Indeterminacy and Sloppiness
Josh Waterfall, Ryan Gutenkunst, Chris Myers

Cost Contours

-10^{-6} to 10^{-6}
Stiff direction
-10^{-3} to 10^{-3}
Sloppy direction
10^{-3} to 10^{-6}

fits of decaying exponentials

Horizontal scale shrunk by 1000 times
Aspect ratio = Human hair
Many parameter sets give almost equally good fits

A few ‘stiff’ constrained directions allow model to remain predictive

Few stiff, many sloppy directions
Scientific model: Predictions about behavior depend on physical constants (parameters) in the model. Sloppiness: the behavior only depends on a few stiff parameter combinations.
Emergence: More is Different

Condensed Matter

Microscopic complexity

Simplicity emerges on long length and time scales, low energies

Emergent theory compresses microscopic details into a few governing parameters
Sloppiness and the Diffusion Equation
Ben Machta, Ricky Chachra, Mark Transtrum

What features of the microscopic hopping laws remain after several hops? Central limit theorem: only mean and variance.

Eigenvalues of parameter identifiability: Stiff = emergent, sloppy = microscopic

Diffusion equation
Microscopic long-range hopping model
Continuum limit
\[\frac{\partial \rho}{\partial t} = R \rho - V \frac{\partial \rho}{\partial x} + D \frac{\partial^2 \rho}{\partial x^2} \]

One time step: all \(\theta_h \)
6 time steps: only \(R, V \) and \(D \)
Renormalizability: Invisible underpinnings

Particle physics
Renormalizability: Low energy physics independent of cutoff theory

Underlying theory contributes only a few governing parameters
Can’t see microscopic details at low energies: need big accelerators
What features of the microscopic interactions remain after coarse graining?

Renormalization group: only h and $T-T_c$.

Eigenvalues of the Fisher Information matrix, Ising with long-range couplings. Only [left] eigenvector of relevant RG operators measurable.

Sloppy after coarse graining in space.
How is science possible, without small parameters like $1/L, T-T_c$?

Simple models succeed in describing complex behavior.
Neural Networks and the Model Manifold

Lorien Hayden, Alex Alemi

Stacked Denoising Autoencoder

MNIST digits

Geodesic Widths

\[y(\tilde{h}) = \sigma(\sigma(\tilde{h} \cdot W_3^T + b_3') \cdot W_2^T + b_2') \cdot W_1^T + b_1') \]
Systems Biology: Cell Protein Reactions
Kevin Brown, Rick Cerione

\[
\frac{d[SosActive]}{dt} = +k_{BGF} \frac{[boundEGFR][SosInactive]}{[SosInactive] + K_{mBGF}} - k_{dSos} \frac{[P90RskActive]}{[SosActive] + K_{mdSos}}
\]
Parameters Fluctuate over Enormous Range

- All parameters vary by minimum factor of 50, some by a million
- Not robust: four or five “stiff” linear combinations of parameters; 44 sloppy

Are predictions possible?
Predictions are Possible

Model predicts that the left branch isn’t important

Parameters fluctuate orders of magnitude, but still predictive!
Systems Biology

Seventeen models

(a) eukaryotic cell cycle
(b) Xenopus egg cell cycle
(c) eukaryotic mitosis
(d) generic circadian rhythm
(e) nicotinic acetylcholine intra-receptor dynamics
(f) generic kinase cascade
(g) Xenopus Wnt signaling
(h) Drosophila circadian rhythm
(i) rat growth-factor signaling
(j) Drosophila segment polarity
(k) Drosophila circadian rhythm
(l) Arabidopsis circadian rhythm
(m) in silico regulatory network
(n) human purine metabolism
(o) Escherichia coli carbon metabolism
(p) budding yeast cell cycle
(q) rat growth-factor signaling

Enormous Ranges of Eigenvalues

(3^{48} is a big number)

Sloppy Range $\sim \sqrt{\lambda}$
The Universe

ΛCDM fit for cosmic microwave background radiation

Universe is flat, mostly unknown dark stuff

- Six parameter ΛCDM model is sloppy fit to CMB; SNe and BAO determine
- More general models introduce worse degeneracies

Katherine Quinn, Michael Niemack, Francesco De Bernardis
Sloppy Universality Outside Bio
Waterfall, Gutenkunst, Chachra, Machta, Clement

Enormous range of eigenvalues; Roughly equal density in log; Observed in broad range of systems
The Model Manifold
Mark Transtrum, Ben Machta

Parameter space
Stiff and sloppy directions
Canyons, Plateaus

Data space
Manifold of model predictions
Parameters as coordinates
Model boundaries $\theta_n = \infty, \theta_m$ cause Plateaus
Metric $g_{\mu\nu}$ from distance to data

Two exponentials θ_α fit to three data points y_n,
$$y_n = \exp(-\theta_1 t_n) + \exp(-\theta_2 t_n)$$
Geodesics

“Straight line” in curved space
Shortest path between points

Easy to find cost minimum using polar geodesic coordinates γ_1, γ_2

Cost contours in geodesic coordinates nearly concentric circles!
Use this for algorithms...
The Model Manifold is a **Hyper-Ribbon**

- Hyper-ribbon: object that is longer than wide, wider than thick, thicker than ...
- Thick directions traversed by stiff eigenparameters, thin as sloppy directions varied.

Widths along geodesics track eigenvalues almost perfectly!

Sum of many exponentials, fit to $y(0), y(1)$ data predictions at $y(1/4), y(1/2), y(3/4)$

Diffusion equation after three time steps
The Model Manifold is a **Hyper-Ribbon**

- Hyper-ribbon: object that is longer than wide, wider than thick, thicker than ...
- Thick directions traversed by stiff eigenparameters, thin as sloppy directions varied.

Sum of many exponentials, fit to $y(0)$, $y(1)$ data predictions at $y(1/4)$, $y(1/2)$, $y(3/4)$

Widths along geodesics track eigenvalues almost perfectly!

Diffusion equation after three time steps
Hierarchy of widths and curvatures

Hierarchy of widths

Cross sections: fixing \(f \) at 0, \(1/2 \), 1

Theorem: interpolation good with many data points

Geometrical convergence

Multi-decade span of widths, curvatures, eigenvalues

Widths \(\sim \sqrt{\lambda} \) sloppy eigs

Parameter curvature \(K^P = 10^3 \times K \) >> extrinsic curvature
Why is it so thin and flat?

Model $f(t, \theta)$ analytic:
\[f^{(n)}(t)/n! \leq R^{-n} \]
Polynomial fit $P_{m-1}(t)$ to $f(t_1), \ldots, f(t_m)$

Interpolation convergence theorem
\[\Delta f_{m+1} = f(t) - P_{m-1}(t) \]
\[< (t-t_1) (t-t_2) \ldots (t-t_m) f^{(m)}(\xi)/m! \]
\[\sim (\Delta t / R)^m \]

More than one data per R

Hyper-ribbon: Cross section constraining m points has width $W_{m+1} \sim \Delta f_{m+1} \sim (\Delta t / R)^m$

Extrinsic flatness: $N=M$ trivially flat, extra data deviates $\varepsilon \sim \Delta f_{N+1}$, so curvature $K \sim \varepsilon/W_j^2 \sim (\Delta t/R)^{N+1-j}/W_j$
Science appears to rely on parameter compression: only a few stiff parameter combinations matter.

- How is our general explanation for the hierarchy of stiffness (interpolation theory) related to that in physics (small parameters)?
- Without sloppiness, science is hard. (If all the details matter, can’t work toward the answer.) Is science selecting sloppy problems, or is everything sloppy?
Sloppy Applications

Several applications emerge:

A. Fitting data vs. measuring parameters (Gutenkunst)

B. Finding best fits by geodesic acceleration (Transtrum)

C. Generation of reduced models (Transtrum)

D. Unsupervised learning: Economic sectors from stock prices

E. Estimating systematic errors: DFT and interatomic potentials (Jacobsen et al.)
Sloppy Applications

Several applications emerge

A. Fitting data vs. measuring parameters (Gutenkunst)

B. Finding best fits by geodesic acceleration (Transtrum)

C. Generation of reduced models (Transtrum)

D. Unsupervised learning: Economic sectors from stock prices

E. Estimating systematic errors: DFT and interatomic potentials (Jacobsen et al.)
A. Are rate constants useful?

Fits vs. measurements

- Easy to Fit (14 expts); Measuring huge job (48 params, 25%)
- One missing parameter measurement = No predictivity
- Sloppy Directions = Enormous Fluctuations in Parameters
- Sloppy Directions often do not impinge on predictivity

Monte Carlo (anharmonic)
A. Are rate constants useful?

Fits vs. measurements

- Easy to Fit (14 expts); Measuring huge job (48 params, 25%)
- One missing parameter measurement = No predictivity
- Sloppy Directions = Enormous Fluctuations in Parameters
- Sloppy Directions often do not impinge on predictivity
A. Are rate constants useful?

Fits vs. measurements

- Easy to Fit (14 expts); Measuring huge job (48 params, 25%)
- One missing parameter measurement = No predictivity
- Sloppy Directions = Enormous Fluctuations in Parameters
- Sloppy Directions often do not impinge on predictivity
A. Are rate constants useful?

Fits vs. measurements

- Easy to Fit (14 expts); Measuring huge job (48 params, 25%)
- One missing parameter measurement = No predictivity
- Sloppy Directions = Enormous Fluctuations in Parameters
- Sloppy Directions often do not impinge on predictivity
B. Finding best fits: Geodesic acceleration

Geodesic Paths nearly circles
Follow local geodesic velocity?

\[\delta \theta^\mu = -g_{\mu \nu} \nabla_\nu C \]

- Gauss-Newton
- Hits manifold boundary

Model Graph
add weight \(\lambda \) of parameter metric yields Levenberg-Marquardt:
Step size now limited by curvature

Follow parabola, **geodesic acceleration**
Cheap to calculate; faster; more success
Dynamics on the model manifold: Searching for the best fit

• Jeffrey’s prior plus noise
• Big noise concentrates on manifold edges
• Note scales: flat
• Top: Levenberg-Marquardt
• Bottom: Geodesic acceleration
• Large points: Initial conditions which fail to converge to best fit
B. Finding best fits: Model manifold dynamics (Isabel Kloumann)

Dynamics on the model manifold: Searching for the best fit

- Jeffrey’s prior plus noise
- Big noise concentrates on manifold edges
- Note scales: flat
- Top: Levenberg-Marquardt
- Bottom: Geodesic acceleration
- Large points: Initial conditions which fail to converge to best fit
Dynamics on the model manifold: Searching for the best fit

- Jeffrey’s prior plus noise
- Big noise concentrates on manifold edges
- Note scales: flat
- Top: Levenberg-Marquardt
- Bottom: Geodesic acceleration
- Large points: Initial conditions which fail to converge to best fit
C. Generation of Reduced Models

Mark Transtrum (not me)

Can we coarse-grain sloppy models? If most parameter directions are useless, why not remove some? Transtrum has systematic method!

1. Geodesic along sloppiest direction to nearby point on manifold boundary
2. Eigendirection simplifies at model boundary to chemically reasonable simplified model

Coarse-graining = boundaries of model manifold.
C. Generation of Reduced Models

Mark Transtrum (not me)

48 params
29 ODEs
C. Generation of Reduced Models

Mark Transtrum (not me)

12 params
6 ODEs

Reduced model fits all experimental data

Effective ‘renormalized’ params
D. Machine Learning

Ricky Chachra, Alex Alemi, Paul Ginsparg

Stock Returns Decomposed into ‘Canonical’ Sectors (unsupervised learning)

Low dimensional representations of high-dimensional data

Neural Networks categorize images
E. Bayesian Errors for Atoms

‘Sloppy Model’ Approach to Error Estimation of Interatomic Potentials

Søren Frederiksen, Karsten W. Jacobsen, Kevin Brown, JPS

Interatomic Potentials $V(r_1, r_2, ...)$

- Fast to compute
- Limit $m_e/M \to 0$ justified
- Guess functional form
- Pair potential $\sum V(r_i - r_j)$ poor
- Bond angle dependence
- Coordination dependence
- Fit to experiment (old)
- Fit to forces from electronic structure calculations (new)

17 Parameter Fit
E. Interatomic Potential Error Bars

Ensemble of Acceptable Fits to Data

Not *transferable*

Unknown errors
- 3% elastic constant
- 10% forces
- 100% fcc-bcc, dislocation core

Best fit is *sloppy*: ensemble of fits that aren’t much worse than best fit. **Ensemble in Model Space!**

T_0 set by equipartition energy = best cost

Error Bars from quality of best fit

Green = DFT, Red = Fits
E. Interatomic Potential Error Bars

Ensemble of Acceptable Fits to Data

Not *transferable*

Unknown errors
- 3% elastic constant
- 10% forces
- 100% fcc-bcc, dislocation core

Best fit is *sloppy*: ensemble of fits that aren’t much worse than best fit.

Ensemble in Model Space!

T_0 set by equipartition energy = best cost

Error Bars from quality of best fit

Green = DFT, Red = Fits
Sloppy Molybdenum: Does it Work?
Estimating Systematic Errors

Bayesian error σ_i gives total error if ratio $r = \frac{\text{error}_i}{\sigma_i}$ distributed as a Gaussian: cumulative distribution $P(r) = \text{Erf}(r/\sqrt{2})$

Three potentials
- Force errors
- Elastic moduli
- Surfaces
- Structural
- Dislocation core

$7\% < \sigma_i < 200\%$

“Sloppy model” systematic error most of total

$\sim 2 \ll 200\%/7\%$

Note: tails… Worst errors underestimated by \sim factor of 2
Enhancement factor $F_x(s)$ in the exchange energy E_x

Actual error / predicted error

Deviation from experiment well described by ensemble!
‘Sloppy Model’ Nonlinear Fits: Signal Transduction to Differential Geometry

JPS, Mark Transtrum, Ben Machta, Ricky Chachra, Lorien Hayden, Alex Alemi, Isabel Kloumann, Colin Clement, Kevin Brown, Ryan Gutenkunst, Josh Waterfall, Paul Ginsparg, Chris Myers, …

Figure 5. \(\Lambda \)CDM model: 68.3\%, 95.4\%, and 99.7\% confidence regions of the \((\Omega_m, \Omega_\Lambda)\) plane from SNe Ia combined with the constraints from BAO and CMB. The left panel shows the SN Ia confidence region only including statistical errors while the right panel shows the SN Ia confidence region with both statistical and systematic errors.

Figure 6. \(w \)CDM model: 68.3\%, 95.4\%, and 99.7\% confidence regions in the \((\Omega_m, w)\) plane from SNe Ia BAO and CMB. The left panel shows the SN Ia confidence region for statistical uncertainties only, while the right panels show the confidence region including both statistical and systematic uncertainties. We note that CMB and SN Ia constraints are orthogonal, making this combination of cosmological probes very powerful for investigating the nature of dark energy.
‘Sloppy Model’ Nonlinear Fits: Signal Transduction to Differential Geometry

JPS, Mark Transtrum, Ben Machta, Ricky Chachra, Isabel Kloumann, Kevin Brown, Ryan Gutenkunst, Josh Waterfall, Chris Myers, ...

Cell Dynamics

Sloppiness

Fitting Exponentials

Hyper-ribbons

Model Manifold

Coarse-Grained Models
C. EGFR Trafficking Model

Fergal Casey, Cerione lab

- Active research, Cerione lab: testing hypothesis, experimental design (Cool1-β-PIX)
- 41 chemicals, 53 rate constants; only 11 of 41 species can be measured
- Does Cool-1 triple complex sequester Cbl, delay endocytosis in wild type NIH3T3 cells?

![Diagram of EGFR Trafficking Model]

- EGFR Trafficking Model:
 - EGFR activation of MAPK pathway and other effectors (e.g. Src)
 - Recycling and internalization
 - Recycles to late endosome / lysosome (degradation)
 - Triple complex formation involving Cbl, Cool-1, and Cdc42

Receptor activation of MAPK pathway and other effectors (e.g. Src)
C. Trafficking: experimental design

Which experiment best reduces prediction uncertainty?

- Amount of triple complex was not well predicted
- V-optimal experimental design: single & multiple measurements
- Total active Cdc42 at 10 min.; Cerione independently concurs
- Experiment indicates significant sequestering in wild type
- Predictivity without decreasing parameter uncertainty
C. Trafficking: experimental design

Which experiment best reduces prediction uncertainty?

- Amount of triple complex was not well predicted
- V-optimal experimental design: single & multiple measurements
- Total active Cdc42 at 10 min.; Cerione independently concurs
- Experiment indicates significant sequestering in wild type
- Predictivity without decreasing parameter uncertainty
D. Evolution in Chemotype space

Implications of sloppiness?

• Culture of identical bacteria, one mutation at a time
• Mutation changes one or two rate constants (no pleiotropy): orthogonal moves in rate constant (chemotype) space
• Cusps in first fitness gain (one for each rate constant, big gap)
• Multiple mutations get stuck on ridge in sloppy landscape

Fitness gain from first successful mutation
PC12 Differentiation

Biologists study which proteins talk to which. Modeling?
PC12 Differentiation

Biologists study which proteins talk to which. Modeling?
PC12 Differentiation

Biologists study which proteins talk to which. Modeling?
Biologists study which proteins talk to which. Modeling?
PC12 Differentiation

Biologists study which proteins talk to which. Modeling?
PC12 Differentiation

Tunes down signal (Raf-1)

Biologists study which proteins talk to which. Modeling?
PC12 Differentiation

Biologists study which proteins talk to which. Modeling?
Edges of the model manifold

Fitting Exponentials
Top: Flat model manifold; articulated edges = plateau
Bottom: Stretch to uniform aspect ratio (Isabel Kloumann)
Edges of the model manifold

Fitting Exponentials
Top: Flat model manifold; articulated edges = plateau
Bottom: Stretch to uniform aspect ratio (Isabel Kloumann)
Which Rate Constants are in the Stiffest Eigenvector?

Eigenvector components along the bare parameters reveal which ones are most important for a given eigenvector.

Oncogenes

Ras

Raf1

stiffest

2nd stiffest
Where is Sloppiness From?

Fitting Polynomials to Data

Fitting Monomials to Data

\[y = \sum a_n x^n \]

Functional Forms Same

Hessian \(H_{ij} = \frac{1}{i+j+1} \)

Hilbert matrix: famous

Orthogonal Polynomials

\[y = \sum b_n L_n(x) \]

Functional Forms Distinct

Eigen Parameters

Hessian \(H_{ij} = \delta_{ij} \)

Sloppiness arises when bare parameters skew in eigenbasis

Small Determinant!

\[|H| = \prod \lambda_n \]
Proposed universal ensemble

Why are they sloppy?

Assumptions: (Not one experiment per parameter)

i. Model predictions all depend on every parameter, symmetrically: \(y_i(\theta_1, \theta_2, \theta_3) = y_i(\theta_2, \theta_3, \theta_1) \)

ii. Parameters are nearly degenerate: \(\theta_i = \theta_0 + \varepsilon_i \)

\[H = J^T J = V^T A^T AV \]

\[V = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \varepsilon_1 & \varepsilon_2 & \cdots & \varepsilon_N \\ \vdots & \vdots & \ddots & \vdots \\ \varepsilon_1^d & \varepsilon_2^d & \cdots & \varepsilon_N^d \end{bmatrix} \]

\[\det(V) = \prod_{d=N-1}^{d=N} (\varepsilon_i - \varepsilon_j) \propto \varepsilon^{N(N-1)/2} \]

- Implies enormous range of eigenvalues
- Implies equal spacing of log eigenvalues
- Like universality for random matrices
48 Parameter “Fit” to Data

Cost is Energy

\[C(\vec{\theta}) = \frac{1}{2} \sum_{i=1}^{N_p} \frac{(y(\vec{\theta}) - y_i)^2}{\sigma_i^2} \]

Ensemble of Fits Gives Error Bars

Error Bars from Data Uncertainty

[Graph showing ERK* and Time]
Exploring Parameter Space

Rugged? More like Grand Canyon (Josh)

Glasses: Rugged Landscape
Metastable Local Valleys
Transition State Passes
Optimization Hell: Golf Course
Sloppy Models
Minima: 5 stiff, N-5 sloppy
Search: Flat planes with cliffs
Climate models contain many unknown parameters, fit to data

- General Circulation Model (air, oceans, clouds), exploring doubling of CO$_2$
- 21 total parameters
- Initial conditions and (only) 6 “cloud dynamics” parameters varied
- Heating typically 3.4K, ranged from < 2K to > 11K

Stainforth et al., *Uncertainty in predictions of the climate response to rising levels of greenhouse gases*, *Nature* 433, 403-406 (2005)
Neural Networks

Mark Transtrum

- Neural net “trained” to predict Black-Scholes output option price OP, given inputs volatility V, time t, and strike S
- Each circular “neuron” has sigmoidal response signal s_j to input signals s_i:
 \[s_j = \tanh(\sum_{i} w_{ij} s_i) \]
- Inputs and outputs scaled to [-1,1]
- 101 parameters w_{ij} fit to 1530 data points

<table>
<thead>
<tr>
<th>V</th>
<th>t</th>
<th>S</th>
<th>OP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>5.0</td>
<td>75.</td>
<td>25.0000</td>
</tr>
<tr>
<td>0.40</td>
<td>5.0</td>
<td>93.</td>
<td>7.2537</td>
</tr>
<tr>
<td>0.40</td>
<td>15.0</td>
<td>79.</td>
<td>21.0225</td>
</tr>
<tr>
<td>0.66</td>
<td>10.0</td>
<td>91.</td>
<td>10.3957</td>
</tr>
</tbody>
</table>

(http://www.scientific-consultants.com/nnbd.html)
Curvatures

Intrinsic curvature \(R^\mu_{\nu\alpha\beta} \)
- determines geodesic shortest paths
- independent of embedding, parameters

Extrinsic curvature
- also measures bending in embedding space (i.e., cylinder)
- independent of parameters
- Shape operator, geodesic curvature

Parameter effects
curve“vature
- Usually much the largest
- Defined in analogy to extrinsic curvature (projecting out of surface, rather than into)
Why is it so thin?

Model $f(t, \theta)$ analytic:

$$f^{(n)}(t)/n! \leq R^{-n}$$

Polynomial fit $P_{m-1}(t)$ to $f(t_1), \ldots, f(t_m)$

Interpolation convergence theorem

$$\Delta f_{m+1} = f(t) - P_{m-1}(t)$$
$$< (t-t_1) \cdots (t-t_m) f^{(m)}(\xi)/m!$$
$$\sim (\Delta t / R)^m$$

More than one data per R

Hyper-ribbon: Cross-section constraining m points has width $W_{m+1} \sim \Delta f_{m+1} \sim (\Delta t/R)^m$
B. Finding sloppy subsystems

Model reduction?

- Sloppy model as multiple redundant parameters?
- Subsystem = subspace of parameters p_i with similar effects on model behavior
- Similar = same effects on residuals r_j
- Apply clustering algorithm to rows of $J_{ij}^T = \partial r_j / \partial p_i$

Continuum mechanics, renormalization group, Lyapunov exponents can also be viewed as sloppy model reduction

