

Sterile Neutrinos at the eV and keV Scales

KAVLI INSTITUTE FOR THEORETICAL PHYSICS Symmetry Tests in Nuclei and Atoms September 19-23 2016

> Thierry Lasserre Institute for Advanced Study, TU München CEA-Saclay, DRF/IRFU/SPP & APC

Established Neutrino Physics

- 3 types, spin $\frac{1}{2}$, neutral, left handed, $\sigma(1 \text{ MeV}) \approx 10^{-45-43} \text{ cm}^2$
- Neutrinos have tiny masses and mix: 0.04 eV < m_v < \approx 1 eV
- Two views on W decay:

• PMNS matrix U relates mass & flavor: $|v_i\rangle = \Sigma U_{\alpha i} |v_{\alpha}\rangle$

$$P(\overline{\nu}_{x} \rightarrow \overline{\nu}_{x}) = 1 - \sin^{2} \left(2\theta_{i} \right) \sin \left(1.27 \frac{\Delta m_{i}^{2} (eV^{2})L(m)}{E(MeV)} \right)$$

3 ν Oscillation Formalism

PMNS mixing matrix

- 3-flavour effects are suppressed since: $\Delta m_{sol}^2 << \Delta m_{atm}^2 (1/30) \& \theta_{13} << 1$

Open Questions

 ${f v}$ flavor

change

What are the masses of the mass eigenstates v_i?

- Is there any conserved Lepton Number (Dirac or Majorana neutrino) ? $\beta\beta 0 \nu$
- Precise measurements of the leptonic mixing matrix?
- Do the behavior of ν violate CP?
- Is leptonic P responsible for the matter-antimatter asymmetry?
- Are there additional (sterile) neutrino states

v flavor change, Cosmology

Sterile Neutrinos at the eV-scale

LSND Anomaly (stopped π⁺ beam)

- 1st results in 1995
- Channel: anti- $v_{\mu} \rightarrow$ anti- v_{e}
- Detection : anti- ν_{e} + ¹H \rightarrow e⁺ + n
- Baseline: 30 m
- Energy: 20 < E (MeV) < 50</p>
- Status:
 - anti-v_e excess observed
 → 32.2 ± 9.4 ± 2.3 (3.8σ)
 - not confirmed by Karmen
 - confirmed by MiniBooNE
- v-Oscillation interpretation:
 - $\Delta m^2 > 0.1 \text{ eV}^2 >> \Delta m_{atm}^2$

The Gallium Anomaly (GA)

 Test of solar neutrino radiochemical detectors GALLEX and SAGE

• ⁷¹Ga +
$$v_e \rightarrow$$
 ⁷¹Ge + e⁻

- 4 calibration runs with 20-60 PBq
 Electron Capture v_e emitters
 - Gallex, <L>=1.9 m
 - ⁵¹Cr, 750 keV
 - Sage, <L>=0.6 m
 ⁵¹Cr & ³⁷Ar (810 keV)

Deficit observed

3σ anomaly

The Reactor Anomaly (RAA)

Th. Lasserre – KITP – STNA 2016

Three Active Neutrinos

Adding Sterile Neutrinos

 $\mathbf{\tilde{v}}_{e}$ disappearance (3+1)

- GA & RAA : comparison between data and interaction rate prediction
 - Search for L, E, L/E pattern (shape only)
 - Complement with a <u>rate analysis</u> need for an absolute calibration
- Input from sterile neutrino global fits • $\Delta m_{new}^2 \approx 0.1-10 \text{ eV}^2 \rightarrow L_{osc}(m)=2.5 \frac{E(MeV)}{\Delta m^2(eV^2)} \approx 1-10 \text{ m}$ • $\sin^2(2\theta_{new}) \approx 0.01 - 0.2$
- Experimental requirements
 - $\Delta m_{new}^2 \approx eV^2$: <u>compact source</u> < 1m & <u>vertex resolution</u> << 1m
 - $sin^2(2\theta_{new})$: experiment with <u>few % stat. & syst. uncertainties</u>

Searches for eV Sterile-v

eV Sterile-v Search at Reactors

Principle of the Measurement

A selection of Ongoing Efforts

v Generator Proposals

Туре	Detection	Background	lsotope	Production	Activity	Projects
$ u_{\rm e}$	$\nu_e e \rightarrow \nu_e e$ 5% E _{res} 15cm R _{res}	Detector Radioactivity	51 <mark>Cr</mark> 0.75 MeV t _{1/2} =26d	n _{th} irradiation in Reactor	>110 PBq	Sage LENS
		Solar $ u$			>370 PBq	SOX-Cr (SNO+)
		(irreducible) ∨ generator impurities	³⁷ Ar 0.8 MeV t _{1/2} =35d	n _{fast} irradiation in Reactor (breeder)	>37 PBq	-
	or Radio- chemical				185 PBq	Ricochet
erc	ν _e p → e ⁺ n E _{th} =1.8 MeV	reactor $ u$, geo $ u$,	¹⁴⁴ Ce E<3MeV	spent nuclear fuel reprocessing + REE extraction	3.7 PBq	CeLAND Ce-SOX
	(e+ n)		t _{1/2} =285d		18.5 PBq	Daya-Bay
$\overline{\nu}_{e}$	5% E _{res} ng 15cm R _{res} im	n generator impurities	⁹⁰ Sr ¹⁰⁶ Rh		-	-
	³ H → He e ⁻ n _e EC/b-decay	Kink search	³ H E<18 keV	Irradiation in reactors	110 GBq	KATRIN (Mare/Echo)

Sterile-v Search with a ¹⁴⁴Ce source: CeSOX

erc

Concept of CeSOX

Oscillometry inside BOREXINO

Th. Lasserre – KITP – STNA 2016

Antineutrino Emitter

TUM Institute for Advanced Study

(ITEP N°90 1994, PRL 107, 201801, 2011)

- \overline{v}_e detection: $\overline{v}_e + p \rightarrow e^+ + n$
 - large IBD cross section \rightarrow 5 PBq
 - (e⁺,n) coincidence → mitigate backgrounds

• ???

- Abundant fission product
- : short-lived & high-Q_{β} $\overline{\nu}_{e}$ -emitter above IBD threshold

Antineutrino Emitter: ¹⁴⁴Ce-¹⁴⁴Pr

(ITEP N°90 1994, PRL 107, 201801, 2011)

- \overline{v}_e detection: $\overline{v}_e + p \rightarrow e^+ + n$
 - large IBD cross section \rightarrow 5 PBq

- (e⁺,n) coincidence → mitigate backgrounds
- ¹⁴⁴Ce-¹⁴⁴Pr
 - Abundant fission product (5%)
 - ¹⁴⁴Ce: long-lived & low-Q_β time to produce, transport, use
 - ¹⁴⁴Pr: short-lived & high-Q_β
 ν_e-emitter above IBD threshold

CeANG Production Overview

- Start from 2y old spent nuclear fuel
- Radiochemical Plant
 - U and Pu recovered by reprocessing of SNF (Purex®)
 - Removal of ¹³⁷Cs, ⁹⁰Sr, ¹⁰⁶Ru
 - Extraction of Cerium
 - Primary encapsulation
 - Activity measurement (≈<u>5%</u>)

Radioisotope Plant

- Source (CeANG) manufacture
- Certification SFRM / ISO 9978
- Loading into tungsten shield
- Loading into TN-MTR cask
- 2012-15: R&D. 2017: production

Cerium Extraction

- Complexing agent displacement chromatography
- Separation of Cerium
 - From Lanthanum
 - From Praseodymium
 - From other radio-impurities
- Extra-purification for ²⁴⁴Cm
 - Neutron emitter
- Control of radio-impurities
 - Y and α spectroscopy
 - ICP-MS
- Precipitation in oxalate Ce₂(C₂O₄)₃

Special Form Radioactive Material

Inner Capsule Pressure

The radioactive decay of ¹⁴⁴Ce in the form of CeO₂ releases O_2

$$2CeO_2 \xrightarrow{144} Ce \beta - decay} Pr_2O_3 + \frac{1}{2}O_2$$

CeO₂: Cerium oxidation state = +IV Pr₂O₃: Praseodymium oxidation state = +III

Pressure evolution

- Increase due to the production of O_2
- Decrease due to the CeANG cooling as ¹⁴⁴Ce decays
- Maximum pressure reached after 3 years at $\Delta P < 5$ bar

max 4.5 - min 3.5 **∆ P** capsule (bar) 3 2.5 1.5 0.5 **10**⁻¹ 10⁻² **10**⁰

Time (year)

shielded capsule - f=0.25 - A_0 = 5.5 PBq - Gas at 300 °C

 10^{2}

10¹

¹⁴⁴Ce samples (Mayak)

- Pilot production in Mayak (2013)
 - PBq-scale 6 y old fuel
 - 30 cm³ Ce(NO₃)₃
 60 kBq of ¹⁴⁴Ce
- ICP-MS and α-spectroscopy
 - Cerium extraction process
 - Neutron emitter impurities
- γ-spectroscopy
 - β / γ impurities
- β-spectroscopy
 - ¹⁴⁴Ce & ¹⁴⁴Pr β-spectra (W/Bq)
 - ¹⁴⁴Pr β -spectrum: expected ν -rate

High Density Tungsten Shield

Radiation Dose / Thermal Features

- Thermal Features
 - 5.5 PBq in ¹⁴⁴Ce
 - Cerium
 - T < 550 °C
 - Capsule
 - T < 400 °C
 - Shielding
 - T < 80 °C.

- Radiation Dose
 - 5.5 PBq in ¹⁴⁴Ce
 - Gamma dose
 - at 1 m < 8 µSv/h
 - origin: ¹⁴⁴Pr de-excitation
 - Neutron dose
 - at 1 m < 5 nSv/h
 - origin: ²⁴⁴Cm SF (<10⁵ n/s)

valeurs des isothermes (°C)

Installation Status

Transport & Logistics

- IAEA Regulations for the Safe Transport of Radioactive Material
- Train / Dedicated Boat/ Truck: 3 weeks (5% activity loss)

Arrival at LNGS

Gran Sasso National Laboratory

Hall C (Opera / Borexino)

Deployement

Th. Lasserre – KITP – STNA 2016

Borexino

Gamma Induced Background

- Random coincidence between two γ's from the ¹⁴⁴Ce source
- ¹⁴⁴Ce sample: no γ contamination
 @10⁻⁴ Bq / Bq of ¹⁴⁴Ce

Strict control of impurities
 → shall be negligible

Neutron Induced Background

- 2 neutrons from spontaneous fission \rightarrow 2 neutron captures \rightarrow 2 γ 's
- CeANG test production:
- 10⁻⁵ Bq ²⁴⁴Cm / Bq ¹⁴⁴Ce

cea

eV Sterile-v Search with a Tritium Source: KATRIN

Active ν Mass with KATRIN

Light Sterile Neutrino in KATRIN

Integral Tritium β -decay spectrum near endpoint E₀=18.575 keV

Th. Lasserre – KITP – STNA 2016

Impact of the sterile ν mass

Impact of the sterile ν mixing

Impact of backgrounds

Signal & Statistical Uncertainty

Tritium Source Induced Systematics

Systematics: Electron-T₂ scattering

- Scattering probabilities (correlated)
 - B_s ±0.5%
 - B_{max} ±0.5%
 - ρd ±0.5%
 - σ_{IS} ±1%

Energy Loss (uncorrelated)

Spectrometer Induced Systematics

Response Function with Uncertainties

5000 KATRINs simulated varying Source + Spectrometers parameters

Integral Spectrum With Uncertainties

Th. Lasserre – KITP – STNA 2016

KATRIN + Stéréo + CeSOX

Th. Lasserre – KITP – STNA 2016

CeSOX+ KATRIN Interplay

Th. Lasserre - 25/08/2016

eV Sterile-v Search with Beams: SNB

ν beam proposals

Туре	Source	App. /Dis.	Oscillation Channels	Projects
lsotope Decay at Rest	p + ⁹ Be → ⁸ Li + 2p n + ⁷ Li→ ⁸ Li ⁸ Li→ ⁹ Be + e ⁻ + $\overline{\nu}_{e}$	Dis.	$\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$	IsoDAR
Pion (Kaon) Decay at Rest	$\pi^{+} \rightarrow \mu^{+} \nu_{\mu} \qquad \qquad$	App. & Dis.	$ \begin{array}{c} \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} \\ \nu_{e} \rightarrow \nu_{e} \end{array} $	OscSNS, KDAR, JPARC-MLF
Pion Decay in Flight	$\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$ $ \stackrel{\downarrow}{\rightarrowtail} e^{+} \overline{\nu}_{\mu} \nu_{e}$	App. & Dis.	$ \begin{array}{c} \nu_{\mu} \rightarrow \nu_{e} \\ \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} \\ \nu_{\mu} \rightarrow \nu_{\mu} \\ \nu_{e} \rightarrow \nu_{e} \end{array} $	MINOS+, nuPRISM, SBN 2018
Low-E Neutrino Factory	$\mu^{+} \rightarrow \mathbf{e}^{+} \overline{\nu}_{\mu} \nu_{\mathbf{e}}$ $\mu^{-} \rightarrow \mathbf{e}^{-} \nu_{\mu} \overline{\nu}_{\mathbf{e}}$	App. & Dis.	$ \frac{\nu_{e} \rightarrow \nu_{\mu}}{\nu_{e} \rightarrow \nu_{\mu}} \\ \frac{\nu_{\mu} \rightarrow \nu_{\mu}}{\nu_{e} \rightarrow \nu_{e}} $	u storm

Start SNB Neutrino Program with Icarus in 2018/19

The Fermilab SBN program

eV-scale: Conclusions and Outlook

- 3 σ anomalies calling for clarification
 - → $\Delta m^2 \approx eV^2$ Sterile Neutrino? Or Experimental Artifacts?
 - Caveat: tensions in global fits
- Reactor Neutrinos 3 years timescale
 - Challenge: background mitigation
- Radioactive Sources 3 years timescale
 - KATRIN
 - Challenge: backgrounds
 - CeSOX
 - Challenges: isotope production, transportation, authorizations
- Neutrino Beams 5-10 years timescale
 - Added value: allow studying sterile neutrino phenomenology, in case?
- Other tests with ($\beta \beta$)0 ν -decay, cosmological data

keV-v Dark Matter (CMvB)

• Right-handed ν 's

- A 'natural' extension of the SM
- Possibility for a new arbitrary mass Eigenstate in the keV-range
- Mix (oscillate) with active ν 's $\sin^2 \theta_{e^4} < 10^{-6} \dots \text{ challenging for all experiments!}$

• keV Sterile ν are suitable DM candidates :

- Can be produced in the Early Universe
- Abundance depends on production mechanism (thermal or not)
- Cosmological life-time
- Can suppress galactic-scale structures in the Universe

White Paper - arXiv:1602.04816

A White Paper on keV Sterile Neutrino Dark Matter

Editors: M. Drewes¹, T. Lasserre², A. Merle³, S. Mertens⁴

Authors: R. Adhikari⁶¹ M. Agostini⁸⁴ N. Anh Ky^{39,73} T. Araki⁵⁷ M. Archidiacono³⁴ M. Bahr⁷⁰ J. Behrens⁶⁹ F. Bezrukov⁶⁴ P.S. Bhupal Dev³¹ D. Borah³⁵ A. Bovarsky⁴⁵ A. de Gouvea⁶² C.A. de S. Pires³⁷ H.J. de Vega^{†9} A.G. Dias³⁶ P. Di Bari³² Z. Djurcic²¹ K. Dolde⁷ H. Dorrer⁸¹ M. Durero³ O. Dragoun⁷¹ M. Drewes¹ Ch.E. Düllmann^{81,83} K. Eberhardt⁸¹ S. Eliseev⁸⁶ C. Enss⁵⁰ N.W. Evans⁵³ A. Faessler⁸⁵ P. Filianin⁸⁶ V. Fischer³ A. Fleischmann⁵⁰ J.A. Formaggio²⁰ J. Franse¹⁶ F.M. Fraenkle⁷ C.S. Frenk⁶³ G. Fuller⁷⁵ L. Gastaldo⁵⁰ A. Garzilli¹⁶ C. Giunti²² F. Glück^{7,66} M.C. Goodman²¹ M.C. Gonzalez-Garcia¹⁹ D. Gorbunov^{65,72} J. Hamann⁴⁰ V. Hannen⁶⁹ S. Hannestad³⁴ J. Heeck¹¹ S.H. Hansen³³ C. Hassel⁵⁰ F. Hofmann⁸⁰ T. Houdy^{2,4} A. Huber⁷ D. lakubovskyi⁴³ A. lanni²⁷ A. Ibarra¹ R. Jacobsson⁸⁷ T. Jeltema⁷⁶ S. Kempf⁵⁰ T. Kieck^{81,82} M. Korzeczek^{7,2} V. Kornoukhov⁴² T. Lachenmaier¹³ M. Laine⁷⁴ P. Langacker^{66,67} T. Lasserre^{1,2,3,4} J. Lesgourgues¹⁵ D. Lhuillier³ Y. F. Li⁷⁷ W. Liao⁷⁹ A.W. Long⁹⁰ M. Maltoni²⁶ G. Mangano²⁴ N.E. Mavromatos⁴⁴ N. Menci⁵⁸ A. Merle⁵ S. Mertens^{6,7} A. Mirizzi^{25,46} B. Monreal⁷⁰ A. Nozik^{65,72} A. Neronov⁴⁹ V. Niro²⁶ Y. Novikov⁵² L. Oberauer¹ E. Otten⁸² N. Palangue-Delabrouille³ M. Pallavicini²³ V.S. Pantuev⁶⁵ E. Papastergis⁵¹ S. Parke⁷⁸ S. Pastor²⁸ A. Patwardhan⁷⁵ A. Pilaftsis⁵⁴ D.C. Radford⁹¹ P. C.-O.Ranitzsch⁶⁹ O. Rest⁶⁹ D.J. Robinson¹⁷ P.S. Rodrigues da Silva³⁷ O. Ruchayskiy^{89,10} N.G. Sanchez⁸ M. Sasaki¹² N. Saviano⁵⁵ A. Schneider⁶⁰ F. Schneider^{81,82} T. Schwetz³⁰

- S. Schönert¹ F. Shankar³² N. Steinbrink⁶⁹ L. Strigari⁵⁶
- F. Suekane⁴¹ B. Suerfu⁶⁸ R. Takahashi³⁸ N. Thi Hong Van³⁹
- I. Tkachev⁶⁵ M. Totzauer⁵ Y. Tsai¹⁸ C.G. Tully⁶⁸ K. Valerius⁷
- J. Valle²⁸ D. Venos⁷¹ M. Viel^{47,48} M.Y. Wang⁵⁹ C. Weinheimer⁶⁹
- K. Wendt⁸² L. Winslow²⁰ J. Wolf⁷ M. Wurm¹⁴ Z. Xing⁷⁷
- S. Zhou⁷⁷ K. Zuber⁸⁸

¹Physik-Department and Excellence Cluster Universe, Technische Universität München, James-Franck-Str. 1, 85748 Garching

 $^2 \rm Commissariat à l'énergie atomique et aux énergies alternatives, Centre de Saclay,$ DSM/IRFU, 91191 Gif-sur-Yvette, France

³Institute for Advance Study, Technische Universität München, James-Franck-Str. 1, 85748 Garching

 $^4AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, 75205 Paris Cedex 13, France$

 $^5\mathrm{Max-Planck-Institut}$ für Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 München, Germany

 $^{6}\mathrm{Institute}$ for Nuclear and Particle Astrophysics, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA

- $^7\mathrm{KCETA},$ Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- $^8\mathrm{CNRS}$ LERMA Observatoire de Paris, PSL, UPMC Sorbonne Universités

⁹CNRS LPTHE UPMC Univ P. et M. Curie Paris VI

- $^{10}\mathrm{Ecole}$ Polytechnique Federale de Lausanne, FSB/ITP/LPPC, BSP, CH-1015, Lausanne, Switzerland
- $^{11}\mathrm{Service}$ de Physique Théorique, Université Libre de Bruxelles, Boulevard du Triomphe, CP225, 1050 Brussels, Belgium
- ¹²Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, University of Tübingen, Germany
- $^{13}{\rm Eberhard}$ Karls Universität Tübingen, Physikalisches Institut, 72076 Tübingen, Germany $^{14}{\rm Institute}$ of Physics and EC PRISMA, University of Mainz
- $^{15}\mathrm{Institute}$ for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen, Germany
- $^{16}\mathrm{Lorentz}$ Institute, Leiden University, Niels Bohrweg 2, Leiden, NL-2333 CA, The Netherlands
- ¹⁷Department of Physics, University of California, Berkeley, CA 94720, USA ¹⁸UC Davis
- ¹⁹C.N.Yang Institute for Theoretical Physics, SUNY at Stony Brook, Stony Brook, NY 11794-3840, USA
- ²⁰Massachusetts Institute of Technology
- ²¹Argonne National Laboratory, Argonne, Illinois 60439, USA
- ²²INFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy
- Interdisciplinary review of the physics case, constraints, and perspectives
- 140 authors from 91 institutions Submitted to JCAP

 $^{^{1}}$ marcodrewes@gmail.com 2 thierry.lasserre@cea.fr

³amerle@mpp.mpg.de

⁴smertens@lbl.gov

Search for keV Neutrino with KATRIN/TRISTAN

TRItium β -decay to Search for STerile Neutrino

keV neutrino signal in ³H β -decay

No Sterile Neutrino

keV neutrino signal in ³H β -decay

10 keV Sterile Neutrino

 $\frac{d\Gamma}{dE} = \cos^2(\theta) \frac{d\Gamma}{dE}(m_{\nu,\text{light}}) + \sin^2(\theta) \frac{d\Gamma}{dE}(m_{\nu,\text{heavy}})$

Dark Matter calls for a tiny mixing...

Th. Lasserre – KITP – STNA 2016

Can we use KATRIN?

An Upgrade: KATRIN/TRISTAN

The TRISTAN project

KATRIN Upgrade: New detector

- Measure ultra-accurately the entire tritium β -decay spectrum
 - Minimize pile-up
 - 10 000 to 100 000 pixels
- Energy resolving silicon detector
 - Low threshold:
 - 10 nm dead layer
 - Energy resolution
 - ≈ 300 eV @20 keV
 - Minimize charge sharing between pixels

Minimize and control systematics

- Backscattering of e⁻ on silicon
 - Optimize geometry and B-fields
 - Active veto?
- Sophisticated readout system
 - Low noise accurate digitization

Tritium β-decay Modeling

KATRIN/TRISTAN Statistical Sensitivity

S. Mertens, T. L. et al. JCAP 1502 (2015) 02, 020

KATRIN Upgrade: Spectrometer

Differential measurement

Retarding potential qU ≈ 0 keV

eq. to no use of spectrometer

- Integral measurement
 - Retarding potential qU scan

from 1 to 19 keV

Magnetic field settings to be optimized

Differential / Integral can be combined to minimize systematics

KATRIN Upgrade: Tritium Source

- Rear wall defines 0-potential
 - To be modified to mitigate
 - backscattering of electrons
 - emission of auger electrons
 - KATRIN: gold, 20 cm
 - Upgrade: Berylium >> 20 cm

- Windowless molecular tritium
 Source (WGTS)
 - X 100 reduction \rightarrow 10⁸ decays/sec
 - Reduction of e-scattering
 - Mitigate e-rate on detector
 - Reduce activity fluctuations < 10⁻³

Feasibility Run with KATRIN - 2017

Direct Search for Sterile Neutrino

Dark Matter with a Stable

Dysprosium 163 Target

at his Dysprosium Target
5000000000000000000000000000000000000
x_{iv} 1609.040/1

Relic keV Neutrinos in Galactic Halo

- keV relic neutrinos = Cν_{keV}B
 Cosmic Massive ν Background
- Cluster in potential well of Galaxies
- $n_{v4} \approx 3 \ 10^5 \ / \ m_4$ (keV) per cm³
- X 1000 more than <u>active</u> C ν B !
- Velocity: 220 km/s

v-Capture on Radioactive Nuclei

Suitable for Cosmic active/sterile ν Background detection

(Sterile) keV Neutrino Capture: Signal

Process suppressed by the v_e to v_4 mixing

- Tritium: 50 μg in KATRIN, ITER total inventory is 2 kg...
- ¹⁰⁶Ru: radioactive sources produced at the level of a few g...
- \rightarrow beyond reasonable technological reach (major safety issues too)

MPOSSIBLE

Capture Rate ∞

Cross section CM v B density & veLocity **>Target Mass: use a stable target… >Exposure Time: Integral search…** Mixing

$\nu +_Z S \rightarrow_{Z+1} D + e^{-1}$

Amount of energy available

 $Q_{\nu_e-capture} = M_n(S) - M_n(D) - m_e + m_{\nu} = Q_{\beta^-}^{tab} + m_{\nu}$

• $CvB - capture process forbidden if <math>Q_{\beta^-}^{tab} < 0$ (m_v < 1 eV and tiny kinetic energy)

• $Cv_{keV}B$ – allowed for massive neutrinos $-m_{\nu_4} < Q_{\beta^-}^{tab} \le 0$ (reaction stimulated by keV neutrino mass)

New Target Candidate: ¹⁶³Dy

¹⁶³Dy(gs, $I^{\pi} = 5/2^{-}) + \nu_4(m_4 > 2.83 \text{ keV}, \sin^2 \theta)$ \rightarrow^{163} Ho(gs, $I'^{\pi'} = 7/2^{-}) + e^{-}$

¹⁶³Dy – 25% natural abundance

Prompt Capture Rate

Th. Lasserre - KITP - STNA 2016

Prompt Capture Rate

Two Measurement Approaches

Integral: #¹⁶³Ho atom counting

Real-time:

Rv_{keV}B e⁻-spectroscopy

Integral: #¹⁶³Ho counting

• Extract ¹⁶³Dy from ore and count ¹⁶³Ho atoms induced by $C \nu_{keV} B$

Two main advantages:

- ¹⁶³Dy can be handled in large quantity without radiation hazard
- ¹⁶³Dy ore is being exposed for geological times, <u>enhancing</u> the number of captures (x1000)

Challenges:

- Isolate and count low number of ¹⁶³Ho atoms with high efficiency
- Background: solar neutrinos, natural cosmogenic production, ...

¹⁶³Ho: Integral Production

Accumulation of v-capture on ¹⁶³Dy in the last 30 000 years $m_4 = 5 \text{ keV}: 7 \cdot 10^9 \cdot \sin^2 \theta_{e4}$ ¹⁶³Ho in 1 ton of ¹⁶³Dy

Cosmogenic ¹⁶³Ho Production

< 1000 ¹⁶³Ho atoms per 1 ton ¹⁶³Dy – Less than SvB/GvB

Integral Sensitivity (preliminary)

Real-Time Approach: Concept

- Search for an electron peak induced by C ν _{keV}B capture on ¹⁶³Dy in an active Dy-based detector
 - Signature similar to $0\nu\beta\beta$ decay
 - Energy-scale similar to Dark Matter WIMP search
- Two main advantages:
 - S ν B becomes negligible in the region of interest
 - Constrain both the sterile neutrino mass and mixing

Challenges

- Detector design, R&D, and realization
- Backgrounds

Solar Neutrino Background

Th. Lasserre – KITP – STNA 2016

keV-scale: Conclusions and Outlook

cea

Direct Search for keV Sterile Neutrin T. Lasserre, ^{1,2,3} , K. Altenmueller, ^{1,3,4} T. Lasserre, ^{1,2,3} , K. Altenmueller, ^{1,3,4} ¹ Commissariat à VER ² Astroparticule et Cosmologie Apr ² Astroparticule et Cosmologie Apr ³ Institute für Aphysik. Der ⁴ Physik-Der ⁴ Physik-Der ⁴ Physik-Der ⁶ Institut für Physik (Werst ⁶ Institut für Kernphysik, Karler ⁶ Institut für Kernphysik, Karler ⁶ Institut für Kernphysik, Karler ¹ Cosmologie App ⁴ Physik-Der ⁴ Physik-Der ⁴ Physik-Der ⁴ Physik-Der ⁴ Physik-Der ⁵ Max, Planck-Institut für Physik (Werst ⁶ Institut für Kernphysik, Karler ⁶ Institut für Kernphysik, Karler ⁶ Institut für Kernphysik, Karler ⁶ Institut für Kernphysik, Karler ⁶ Astroparticule Aphysic	no Dark Matter with a M. Cribier, ^{1,2} A. Merle, ⁵ S. M. Lergie Atomique et aux Energies M. Cribier, ^{1,2} A. Merle, ⁵ S. M. Lergie Atomique et aux Energies Lergie Atomique et aux Energies M. RFU, 91191 Gif-sur-Yvette, used Study, Technische Universit rue Alice Domon et Léonie Duquino net. 1, 85748 Garching, Gei marken, James-Franck-Str. Nather, James-Franck-Str. München, James-Franck-Str. (Dated: September 15, 2016) (Dated: September 15, 2016) (Dated: September 15, 2016) (Dated: search for keV-scale sterifted to s	Stable Dysprosium T Mertens, ^{4,5,6} and M. Vivier Alternatives, France France to 75205 Paris cedex 13, Fran- cit München, rmany Universe, 1, 85748 Garching 1, 85748 Garching 1, 85748 Garching 1, 85748 Garching 1, 0.76021 Karlsruhe, Germ T), D.76021 karls	arget uce ermany my t for mass 16 ³ Ho rum in adioac- bd reach g current g explored	Ayovs os
S laborators with a real-time even	¹⁶³ Ho	Integral per ton of ¹⁶³ Dy	Real-time per ton of ¹⁶³ Dy per 10y	
	Cosmic keV ν sin ² θ=10 ⁻⁵	10 ⁵	500	REALITY
	Solar v	10 ⁵	<1	CHECK AHEAD
	Geo-v	<1	<<1	<u> </u>
	¹⁶³ Ho _{nat}	<1000		Th. Lasserre – KITP – STNA 2016