Direct Neutrino Mass Measurements

-03

Diana Parno

Center for Experimental Nuclear Physics and Astrophysics

University of Washington

Symmetry Tests in Nuclei and Atoms - KITP - September 20, 2016

Outline

- → Probes of neutrino mass: An introduction
- → How to measure a spectrum
- **→** Theoretical challenges
- → A few experimental challenges
- → Light neutrino, bright future

	v oscillation
Observable	$\Delta m_{ij}^2 = m_i^2 - m_j^2$
Present knowledge	$\Delta m_{21}^2 = 7.53(18) \times 10^{-5} \text{ eV}^2$ $\Delta m_{32}^2 = 2.44(6) \times 10^{-3} \text{ eV}^2$
Next generation	
Model dependence of mass extraction	No mass-scale information

	v oscillation	0νββ	
Observable	$\Delta m_{ij}^2 = m_i^2 - m_j^2$	$m_{\beta\beta}^2 = \left \sum_i U_{ei}^2 m_i \right ^2$	
	$\Delta m_{21}^2 = 7.53(18) \times 10^{-5} \text{ eV}^2$ $\Delta m_{32}^2 = 2.44(6) \times 10^{-3} \text{ eV}^2$	$m_{\beta\beta} < (0.2 - 0.4) \text{ eV}$	
Next generation		0.01 – 0.05 eV	
Model dependence of mass extraction	No mass-scale information	 δ₁, δ₂ phases Nucl. matrix elements Requires LNV 	

		v oscillation	0νββ	Cosmology
O)bservable	$\Delta m_{ij}^2 = m_i^2 - m_j^2$	$m_{etaeta}^2 = \left \sum_i U_{ei}^2 m_i ight ^2$	$M_{v} = \sum_{i} m_{i}$
		$\Delta m_{21}^2 = 7.53(18) \times 10^{-5} \text{ eV}^2$ $\Delta m_{32}^2 = 2.44(6) \times 10^{-3} \text{ eV}^2$	$m_{\beta\beta} < (0.2 - 0.4) \text{ eV}$	$M_{v} < (0.12 - 1) \text{ eV}$
	lext eneration		0.01 – 0.05 eV	0.01 – 0.05 eV
d of	Model ependence f mass xtraction	No mass-scale information	 δ₁, δ₂ phases Nucl. matrix elements Requires LNV 	ΛCDMManyparametersH₀ tension

	v oscillation	0νββ	Cosmology	Decay kinematics
Observable	$\Delta m_{ij}^2 = m_i^2 - m_j^2$	$m_{\beta\beta}^2 = \left \sum_i U_{ei}^2 m_i \right ^2$	$M_{v} = \sum_{i} m_{i}$	$m_{\nu\beta}^2 = \sum_i \left U_{ei}^2 \right m_i^2$
	$\Delta m_{21}^2 = 7.53(18) \times 10^{-5} \text{ eV}^2$ $\Delta m_{32}^2 = 2.44(6) \times 10^{-3} \text{ eV}^2$	$m_{\beta\beta} < (0.2 - 0.4) \text{ eV}$	$M_{v} < (0.12 - 1) \text{ eV}$	$m_{\nu\beta} < 2 \text{ eV}$
Next generation		0.01 - 0.05 eV	0.01 - 0.05 eV	0.2 eV
Model dependence of mass extraction	No mass-scale information	 δ₁, δ₂ phases Nucl. matrix elements Requires LNV 	ΛCDMManyparametersH₀ tension	• Energy conservation

- + m_{v β} from kinematics
 - ♦Almost model-independent

 \star Extract $m_{v\beta}$ from spectral shape near endpoint

Kinetic Energy - Q-value (eV)

- + m_{v β} from kinematics
 - ♦ Almost model-independent

 \star Extract $m_{v\beta}$ from spectral shape near endpoint

³**H** (tritium)

$$Q = 18.6 \text{ keV}$$

 $t_{1/2} = 12.3 \text{ yrs}$
Super-allowed

- $+ m_{\nu\beta}$ from kinematics
 - ♦ Almost model-independent

 \star Extract $m_{\nu\beta}$ from spectral shape near endpoint

3
H (tritium)
 $Q = 18.6 \text{ keV}$
 $t_{1/2} = 12.3 \text{ yrs}$
Super-allowed

187**Re**

$$Q = 2.47 \text{ keV}$$
 $t_{1/2} = 4.5 \times 10^9 \text{ yrs}$
Forbidden

115 In to 115 Sn*
$$Q = 0.173 \text{ keV}$$
 $t_{1/2} = 4.4 \times 10^{20} \text{ yrs}$
Forbidden

Direct m_v from Electron Capture

 E_c (keV)

Direct m_v from Electron Capture

♦ Capture de-excitation energy in 163 Ho \rightarrow 163 Dy* + $ν_e$

De Rújula and Lusignoli, Phys. Lett. B **118** (1982) 429

¹⁶³Ho

Q = 2.83 keV $t_{1/2} = 4750 \text{ years}$

The State of the Art

- ★ Two more decades until oscillation limit
- No longer quasidegenerate below 0.1 eV

$$m_{\nu_{\beta}} \neq \sqrt{\sum_{i}^{3} |U_{ei}|^2 m_i^2}$$

Figure from J. Wilkerson, Neutrino 2012

The State of the Art

Outline

- → Probes of neutrino mass: An introduction
- → How to measure a spectrum
- **→** Theoretical challenges
- ★ A few experimental challenges
- → Light neutrino, bright future

- → Measure integral spectrum with moving threshold
- → Magnetic Adiabatic Collimation + Electrostatic filter

$$\mu = \frac{E_{\perp}}{B} = \text{const}$$

- → Measure integral spectrum with moving threshold
- → Magnetic Adiabaţic Collimation + Electrostatic filter

$$\mu = \frac{E_{\perp}}{B} = \text{const}$$

 \hat{p}_e (without E field)

- → Measure integral spectrum with moving threshold
- → Magnetic Adiabaţic Collimation + Electrostatic filter

$$\mu = \frac{E_{\perp}}{B} = \text{const}$$

$$\frac{\Delta E}{E} = \frac{B_{\min}}{B_{\max}}$$

p̂_e (without E field)

- → Measure integral spectrum with moving threshold
- → Magnetic Adiabațic Collimation + Electrostatic filter

$$\mu = \frac{E_{\perp}}{B} = \text{const}$$

$$\frac{\Delta E}{E} = \frac{B_{\min}}{B_{\max}}$$

Mainz

Troitsk (at INR)

 \hat{p}_e (without E field)

NPA xperimental Nuclear Physics and Astrophysics

KATRIN Design **Transport Spectrometers** Rear Pre-Main section section Gaseous T₂ source **LFCS** earth field compensation low-field fine-tuning pectrometer

KATRIN

→ Magnetic field range

3 – 60,000 G

→ Design resolution 0.93 eV

- → 10¹¹ decays/sec
- → 10¹⁴ T reduction, source to spec
- Design m_{νβ}
 sensitivity:
 0.2 eV at 90%
 confidence level

KATRIN Bonus Material

- → Any precision beta spectrum is sensitive to new physics ...
 - ♦e.g. sterile neutrinos (T. Lasserre, yesterday)
 - ♦e.g. Lorentz-invariance violation (Díaz et al., Phys. Rev. D 88 (2013) 071902(R))

- ★ Meanwhile: R&D for time-of-flight spectrum
 - ♦Mitigate background
 - **♦**Improve statistics

Steinbrink et al., N. J. Phys. 15 (2013), 113020

T₂ Spectroscopy: Cyclotron Radiation

Never measure anything but frequency.

-- Arthur Schawlow

★ An electron in a magnetic field will radiate at

$$f_{\gamma} = \frac{f_c}{\gamma} = \frac{eB}{2\pi} \frac{1}{m_e + \frac{1}{c^2} E_{\beta}}$$

T₂ Spectroscopy: Cyclotron Radiation

Never measure anything but frequency.

-- Arthur Schawlow

★ An electron in a magnetic field will radiate at

$$f_{\gamma} = \frac{f_c}{\gamma} = \frac{eB}{2\pi} \frac{1}{m_e + \frac{1}{c^2} E_{\beta}}$$

T₂ Spectroscopy: Cyclotron Radiation

Never measure anything but frequency.

-- Arthur Schawlow

★ An electron in a magnetic field will radiate at

$$f_{\gamma} = \frac{f_c}{\gamma} = \frac{eB}{2\pi} \frac{1}{m_e + \frac{1}{c^2} E_{\beta}}$$

- **→** Trap electrons
- ✦ Measure entire beta spectrum at once: Cyclotron Radiation Emission Spectroscopy

Monreal and Formaggio, PRD 80 (2009) 051301(R)

CRES Data from 83mKr Source

Asner et al., PRL **114** (2015) 162501

CRES Data from 83mKr Source

CRES Data from 83mKr Source

¹⁶³Ho: Microcalorimetry

- **→** Absorber
 - → Sandwich ¹⁶³Ho inside

¹⁶³Ho: Microcalorimetry

- **→** Absorber
 - **→** Sandwich ¹⁶³Ho inside
 - → Convert energy to heat
 - → Want low heat capacity C

$$\Delta T \approx \frac{\Delta E}{C}$$

¹⁶³Ho: Microcalorimetry

- **→** Absorber
 - **→** Sandwich ¹⁶³Ho inside
 - ★ Convert energy to heat
 - → Want low heat capacity C

$$\Delta T \approx \frac{\Delta E}{C}$$

- **→** Thermometer
 - → Small $\Delta T \rightarrow$ big $\Delta \Phi$
 - **→** SQUID readout

Transition Edge Sensor

- \star Thin film near superconducting T_c
- + *R* depends strongly on *T*

Transition Edge Sensor

- → Thin film near superconducting T_c
- + *R* depends strongly on *T*

Au absorber with ¹⁶³Ho filling

- → Preliminary $\Delta E_{FWHM} \sim 4 \text{ eV}$
- $\star \tau_{\rm rise} \sim 6 \ \mu s$

General reference: Alpert et al., Eur. Phys. J. C 75 112 (2015)

Transition Edge Sensor

- \rightarrow Thin film near superconducting T_c
- \star *R* depends strongly on *T*

NuMECS

Temperature (mK)

General reference: Croce et al., J. Low Temp. Phys. 184 958 (2016)

Magnetic Metallic Calorimeter

- → Attach metallic paramagnet to absorber
- → Heat disturbs magnetization

Magnetic Metallic Calorimeter

- → Attach metallic paramagnet to absorber
- → Heat disturbs magnetization

- ◆ PreliminaryΔE_{FWHM}~10 eV
- $\star \tau_{\rm rise} \sim 0.13 \ \mu s$

General reference: Gastaldo et al., J. Low Temp. Phys. **176** 876 (2014)

Whatever Happened to ¹⁸⁷Re?

- → ~15 eV sensitivity for MIBETA (2004)
- **→** R&D by MARE collaboration
 - → Metallic Re (superconducting)
 - → Complex thermalization

- → Dielectric AgReO₄
 - → Long response time

★ Low specific activity

Community has moved on to ¹⁶³Ho

Nucciotti, Adv. High Energy Phys. 2016 9153024

- New decay branch of ¹¹⁵In → ¹¹⁵Sn discovered in 2005 (Cattadori et al., Nucl. Phys. A 748 333, 2005)
- → Lowest known Q_{β} -value, 173±12 eV (Urban et al., PRC 94 011302(R), 2016)

- New decay branch of ¹¹⁵In → ¹¹⁵Sn discovered in 2005 (Cattadori et al., Nucl. Phys. A 748 333, 2005)
- → Lowest known Q_{β} -value, 173±12 eV (Urban et al., PRC 94 011302(R), 2016)
- ★ Low-Q decay hidden in Q=497 keV decay branch

- New decay branch of ¹¹⁵In → ¹¹⁵Sn discovered in 2005 (Cattadori et al., Nucl. Phys. A 748 333, 2005)
- → Lowest known Q_{β} -value, 173±12 eV (Urban et al., PRC 94 011302(R), 2016)
- ★ Low-Q decay hidden in Q=497 keV decay branch

Measuring the end-point energy region of the electron spectrum for the rare β decay of ¹¹⁵In constitutes a magnificent challenge.

-- Andreotti et al., PRC **84** 044605 (2011)

Outline

- → Probes of neutrino mass: An introduction
- → How to measure a spectrum
- **→** Theoretical challenges
- → A few experimental challenges
- → Light neutrino, bright future

T₂: Molecular Final-State Distribution

→ Electronic excitations in T atoms

T₂: Molecular Final-State Distribution

- **→** Electronic excitations in T atoms
- ightharpoonup Excitations in T_2 gas
 - ♦ Electronic: 20 eV
 - ♦ Vibrational: ~0.1 eV
 - ♦ Rotational: ~0.01 eV

T₂: Molecular Final-State Distribution

- **→** Electronic excitations in T atoms
- ightharpoonup Excitations in T_2 gas
 - ♦ Electronic: 20 eV
 - ♦ Vibrational: ~0.1 eV
 - ♦ Rotational: ~0.01 eV

igspace Beta spectrum depends on excitation energies V_k and probabilities P_k

$$\frac{dN}{dE_e} = \frac{G_F^2 m_e^5 \cos^2 \theta_C}{2\pi^3 \hbar^7} |M_{\text{nuc}}|^2 F(Z, E_e) p_e E_e \times \sum_{i,k} |U_{ei}|^2 P_k (E_{\text{max}} - E_e - V_k)$$

$$\times \sqrt{(E_{\text{max}} - E_e - V_k)^2 - m_{\nu i}^2} \times \Theta(E_{\text{max}} - E_e - V_k - m_{\nu i})$$

- → Precise ab initio calculations
- → Uncertainty hard to estimate[®]
- ★ Enters directly into analysis

- → Precise ab initio calculations
- → Uncertainty hard to estimate[®]
- **→** Enters directly into analysis

Calculation	LANL m _v ²	LLNL m _v ²
1985	$-147(79) \text{ eV}^2$	$-130(25) \text{ eV}^2$

Bodine, DSP, Robertson, PRC 91, 035505 (2015) 0.001

- → Precise ab initio calculations
- → Uncertainty hard to estimate[®]
- **→** Enters directly into analysis

Calculation	LANL m _v ²	LLNL m _v ²
1985	-147(79) eV ²	-130(25) eV ²
2000 (est.)	$20(79) \text{ eV}^2$	$37(25) \text{ eV}^2$

Bodine, DSP, Robertson, PRC **91**, 035505 (2015) 0.001

- → Precise ab initio calculations
- → Uncertainty hard to estimate
- **→** Enters directly into analysis

Calculation	LANL m_v^2	LLNL m _v ²
1985	$-147(79) \text{ eV}^2$	-130(25) eV ²
2000 (est.)	$20(79) \text{ eV}^2$	$37(25) \text{ eV}^2$

Bodine, DSP, Robertson, PRC 91, 035505 (2015) 0.001

- **→** New calculations
- ★ Initial-state source characterization

Q Value for ¹⁶³Ho Decay

- +Q = A A' (ground states)
- → For ¹⁶³Ho and ¹⁶³Dy, *Q* inferred from spectrum
- → Significant disagreements between techniques

Q Value for ¹⁶³Ho Decay

- +Q = A A' (ground states)
- \bullet For ¹⁶³Ho and ¹⁶³Dy, Q inferred from spectrum
- → Significant disagreements between techniques

- **SHIPTRAP** ★ 2015: dedicated *Q*measurement with
 SHIPTRAP
 - +Q = 2833(30)(15) eV
 - **→** Lower statistics
 - → Separated from spectral features

¹⁶³Ho: Shakeup

- → Standard spectral calculation assumes 1 e⁻ vacancy
- → What about ¹6³Dy* states with two or more holes?

Lusignoli and Vignati, Phys. Lett. B **697** (2011) 11

¹⁶³Ho: Shakeup

- → Standard spectral calculation assumes 1 e⁻ vacancy
- → What about ¹⁶³Dy* states with two or more holes?

Lusignoli and Vignati, Phys. Lett. B **697** (2011) 11

- → New resonance(s)
- → Structure near endpoint complicates m_v² extraction

Robertson, PRC **91** (2015) 035504 Faessler and Šimkovic, PRC **91** (2015) 045505 Faessler et al., PRC **91** (2015) 064302

¹⁶³Ho: Shakeup

- → Standard spectral calculation assumes 1 e⁻ vacancy
- → What about ¹6³Dy* states with two or more holes?

- → New resonance(s)
- ★ Structure near endpoint complicates m_v² extraction

Robertson, PRC **91** (2015) 035504 Faessler and Šimkovic, PRC **91** (2015) 045505 Faessler et al., PRC **91** (2015) 064302

★ Looks like a few % effect, separated from endpoint

¹⁶³Ho: Shakeoff

- → Electrons can also be excited to the continuum
 - → 3-body process, 163 Ho → 163 Dy[H,H'] + e^- + $ν_e$

¹⁶³Ho: Shakeoff

- → Electrons can also be excited to the continuum
 - → 3-body process, 163 Ho → 163 Dy[H,H'] + e^- + $ν_e$

★ Recent preliminary calculations near endpoint

IHEP **2016** 15, 2016

¹⁶³Ho: Shakeoff

→ 3-body process,
163
Ho → 163 Dy[H , H'] + e^- + $ν_e$

- ★ Recent preliminary calculations near endpoint
 - ★ Enhanced statistics (40x near endpoint)
 - ★ Relative pileup contribution reduced
 - → More complex analysis?
 - Ongoing theory work

JHEP **2016** 15, 2016

Outline

- → Probes of neutrino mass: An introduction
- → How to measure a spectrum
- **→** Theoretical challenges
- ★ A few experimental challenges
- → Light neutrino, bright future

From Proof of Principle to m_v²

→ Further study needed:

- **→** Target activity
- → Homogeneity of magnetic field
- → Lifetime of e⁻ in trap
- → Background
 - → Suppressed by design
- **→** Molecular final states
 - **→** Atomic T source?

Images from Project 8 collaboration

Phase II (T_2)

Tritium Challenges

- → T₂ is simple in principle, but hard in practice
- ★ Example: Mainz experiment (quench-condensed T₂)

Figure from B. Bornschein

Tritium Challenges

- → T₂ is simple in principle, but hard in practice
- ★ Example: Mainz experiment (quench-condensed T₂)

Figure from B. Bornschein

- → The culprit: Source dewetting over time
- → Irregular structure, extra energy loss

Fleischmann et al., Eur. Phys. J. B 16 (2000) 521

Tritium Challenges

- → T₂ is simple in principle, but hard in practice
- ★ Example: Mainz experiment (quench-condensed T₂)

Figure from B. Bornschein

- → The culprit: Source dewetting over time
- → Irregular structure, extra energy loss

Fleischmann et al., Eur. Phys. J. B 16 (2000) 521

KATRIN Source

→ Windowless, gaseous T₂ in 16m cryostat at 30K

KATRIN Source

→ Windowless, gaseous T₂ in 16m cryostat at 30K

KATRIN Source

→ Windowless, gaseous T₂ in 16m cryostat at 30K

→ Stability is crucial:

- **→** Temperature
- → Inlet/outlet pressure
- ✦ Isotopic composition
- **→** Rate
- **→** Scattering

Babutzka et al., New J. Phys. 14 (2012) 103046

¹⁶³Ho Production

→ Neutron irradiation of ¹⁶²Er₂O₃

→ Large & ciar 'C'

lacktriangle Large σ , significant radio impurities

Gatti, v Telescopes 2015 (HOLMES)

ECHo

¹⁶³Ho Production

→ Neutron irradiation of ¹⁶²Er₂O₃

+ Large σ, significant radio impurities

→ Proton irradiation of natDy

→ Small σ, high purity

NuMECS

Gatti, v Telescopes 2015 (HOLMES)

Croce et al., J. Low Temp. Phys. **184** 958 (2016) (NuMECS)

ECHo

Backgrounds

- ** m_v² sensitivity goes as sixth root of background rate
- Novel background sources in large MAC-E filter, e.g.

Wandkowsky et al., J. Phys. G **40** (2013) 085102

Backgrounds

⇒ m_v² sensitivity goes as sixth root of background rate

Novel background sources in large MAC-E filter, e.g.

Wandkowsky et al., J. Phys. G **40** *(2013) 085102*

→ Worst "background" source is pileup

Limits activity/pixel

Alpert et al. (HOLMES), Eur. Phys. J. C **75** (2015) 112

Acknowledgments

Determination of the absolute (anti)neutrino mass, ECT* workshop, Trento, Italy, April 2016

- ★ KITP and the organizers
- ★ The direct neutrinomass measurement community

Support from US DOE Office of Science, DE-FG02-97ER41020

Office of Science

2016

- ★ KATRIN "first light"
- → Final Project 8 83mKr spectra

2016

- ★ KATRIN "first light"
- → Final Project 8 83mKr spectra

2017

12

- → Start of KATRIN T₂ data
- **→** HOLMES prototype array
- → T₂ spectrum from Project 8

10¹⁰

10¹²

Statistics

10¹⁴

10¹⁶

2016

- ★ KATRIN "first light"
- → Final Project 8 83mKr spectra

2017

- → Start of KATRIN T₂ data
- → HOLMES prototype array
- → T₂ spectrum from Project 8

2018

- **→** Full HOLMES operation
- → ECHo-1k (1000 Bq) ends
- → ECHo-1M gets underway

... and Beyond

3 H

- → Design KATRIN sensitivity ~0.2 eV after 5 yrs
- → Phase III of Project 8 (2016-2020) targets 2 eV in 1 yr
- → Ultimate Phase IV of Project 8 could probe hierarchy
 with atomic tritium

¹⁶³Ho

- → NuMECS data will test theory, detector modeling
- **→ HOLMES** target: 1.5 eV stat. sensitivity in 3 yrs
- → ECHo-1M could reach <1 eV stat. sensitivity by 2021

Thank you!

