Nonequilibrium
 Quantum Field Theory

Szabolcs Borsanyi
University of Sussex

What is nonequilibrium?

Tkachev,Misha 2004,... Arnold,Moore 2006

An other setting: defects

Strings appear as topological defects in field theory.
Nonequilibrium QFT accounts for their decay.

The classical approach

Define a lattice field theory, Solve the 2nd order
Klein-Gordon (or Maxwell) equations

$$
\begin{gathered}
\Phi_{\mathbf{n}}\left(t+a_{t}\right)+\Phi_{\mathbf{n}}\left(t-a_{t}\right)-2 \Phi_{\mathbf{n}}(t)-\frac{a_{t}^{2}}{a^{2}} \sum_{i}\left(\Phi_{\mathbf{n}+\dot{\mathbf{i}}}(t)+\Phi_{\mathbf{n}-\hat{\mathbf{i}}}(t)-2 \Phi_{\mathbf{n}}(t)\right) \\
+a_{t}^{2}\left(-\Phi_{\mathbf{n}}+\Phi_{\mathbf{n}}^{3}-h\right)=0
\end{gathered}
$$

Initial condition:
the field value is sampled from an ensemble that reproduces the n -point functions.
Evolution of the ensemble gives the n-point functions at a later time.
This evolution is NONPERTURBATIVE!

The kinetic approach

Particles (balls) collide and interact with a precalculated cross section.

Example: Parton thermalisation with $\mathrm{gg} \rightarrow \mathrm{ggg}$
with $g g \rightarrow g g$ only

Coherence is lost between collisions.
Gradient expansion has been used.What does iustify it?

Initial value problem in QFT

Define path integral along the closed time path contour

$$
\langle\hat{\mathcal{X}}\rangle(t)=\operatorname{Tr} \hat{\rho}(t) \hat{\mathcal{X}}\left(t_{0}\right)=\operatorname{Tr} \hat{\mathcal{U}}\left(t, t_{0}\right) \hat{\rho}\left(t_{0}\right) \hat{\mathcal{U}}^{-1}\left(t, t_{0}\right) \hat{\mathcal{X}}\left(t_{0}\right)
$$

Propagators:

$$
\begin{aligned}
\hat{\mathcal{U}}\left(t, t^{\prime}\right) & =\exp \left[-i \int_{t^{\prime}}^{t} \hat{\mathcal{H}}\left(t^{\prime \prime}\right) d t^{\prime \prime}\right] \\
Z[J] & =\int \mathcal{D} \phi e^{i \int_{c} d x[\mathcal{L}(x)+J(x) \phi(x)]}
\end{aligned}
$$

$$
\begin{aligned}
& G_{i j}^{>}(x, y)=\left\langle\varphi_{i}(x) \varphi_{j}(y)\right\rangle \\
& G_{i j}(x, y)=\left\langle\varphi_{j}(y) \varphi_{i}(x)\right\rangle \\
& G_{i j}(x, y)=\left\langle\mathcal{T}_{c} \varphi_{i}(x) \varphi_{j}(y)\right\rangle \\
& i G_{0}=\left(\partial^{2}+m^{2}\right)^{-1} \\
& F_{i j}(x, y)=\frac{1}{2}\left(G_{i j}^{>}(x, y)+G_{i j}^{<}(x, y)\right) \\
& \rho_{i j}(x, y)=i\left(G_{i j}^{>}(x, y)-G_{i j}^{<}(x, y)\right),
\end{aligned}
$$

Aarts, Berges 2001

$$
G_{i j}(x, y)=F_{i j}(x, y)-\frac{i}{2} \rho_{i j}(x, y) \operatorname{sgn}_{\mathcal{C}}\left(x_{0}, y_{0}\right)
$$

Is the dynamics irreversible?

Thermal equilibrium:

$$
\hat{\rho}=e^{-\beta \hat{H}} / \operatorname{Tr} e^{-\beta \hat{H}} \quad\langle\hat{X}\rangle=\operatorname{Tr} \hat{X} \hat{\rho}
$$

Is thermalization possible in closed nonlinear system?

Quantum

- Mechanics: Equilibrium is a fixed point of the evolution
- $\rho \nrightarrow e^{-\beta \hat{H}} / \operatorname{Tr} e^{-\beta \hat{H}} \quad$ Unitarity!
- $\langle\hat{H}\rangle=$ const. uniquely determines the equilibrium ensemble.

But: $\left\langle\hat{H}^{2}\right\rangle,\left\langle\hat{H}^{3}\right\rangle, \ldots$ conserved (initial conditions)

- The quantum ensemble cannot converge to equilibrium!
- Still, the quantum average of some selected observables may converge to the equilibrium value:

$$
\langle\Phi(x) \Phi(y)\rangle_{\text {noneq }} \longrightarrow\langle\Phi(x) \Phi(y)\rangle_{\text {thermal }}, \text { as } x_{0}, y_{0} \rightarrow \infty
$$

Perturbation theory fails

Example: a damped oscillator

Ist perturbative order:

$$
\begin{aligned}
& \ddot{x}(t)+2 \gamma \dot{x}(t)+m^{2} x(t)=0 \\
& x(t)=A \sin \left(t \sqrt{m^{2}-\gamma^{2}}\right) e^{-t \gamma}
\end{aligned}
$$

$$
x(t)=A \cos (t m)(1-t \gamma)
$$

Secular behaviour: the time is part of the expansion parameter!

A nonperturbative approach: Let's simulate on a lattice!

Euclidean Langevin equation:

$$
\begin{aligned}
\partial_{\vartheta} \phi(x, \vartheta) & =-\frac{\delta S_{E}[\phi]}{\delta \phi(x, \vartheta)}+\eta(x, \vartheta) \\
\left\langle\eta\left(x_{1}, \vartheta_{1}\right) \eta\left(x_{2}, \vartheta_{2}\right)\right\rangle & =2 \delta\left(\vartheta_{1}-\vartheta_{2}\right) \delta^{(4)}\left(x_{1}-x_{2}\right)
\end{aligned}
$$

Parisi,Wu 1981
Langevin equation
on the closed time path contour

$$
\frac{\partial \phi\left(C_{j}\right)}{\partial \vartheta}=i \frac{\partial S}{\partial \phi\left(C_{j}\right)}+\eta_{j}(\vartheta)
$$

In this algorithm probabilities are never used.

Reproduces the hierarchy of SD equations.

It really does converge in real time, too!

Toy model: anharmonic oscillator

Use the action with comlex Δt, with two branches and with $\hat{\rho}$ being part of the action.
Comparison with Schrödinger's equation:
$\langle x(t)\rangle$

Challenge: Is the solution unique?

$$
\langle x(t) x(t)\rangle_{c}
$$

A diagrammatic approach: the 2 PI resummation

... or in a Yukawa theory:

The 2PI effective action

$$
\begin{aligned}
& Z[J, K]=\int \prod_{c=1}^{N} \mathcal{D} \varphi_{c}(x) \exp \left(i \int_{\mathcal{C}} \mathrm{d}^{4} x[\mathcal{L}(x)+\right. \\
& \left.\left.\quad J_{a}(x) \varphi_{a}(x)\right]+\frac{i}{2} \int_{\mathcal{C}} \mathrm{d}^{4} x \int_{\mathcal{C}} \mathrm{d}^{4} y\left[\varphi_{a}(x) K_{a b}(x, y) \varphi_{b}(y)\right]\right),
\end{aligned}
$$

Ist Legendre transform: effective action (IPI diagrams) 2nd Legendre transform: 2PI effective action (2PI diagrams)

$$
\begin{aligned}
& W[J, K]=-i \log (Z[J, K]) \quad \delta W[J, K] / \delta J=\phi \quad \delta W[J, K] / \delta K=\left(\phi^{2}-G\right) / 2 \\
& \Gamma[\phi, G]=W[J, K]-\int_{\mathcal{C}} \mathrm{d}^{4} x\left[J_{a}(x) \phi_{a}(x)\right] \\
& \quad-\frac{1}{2} \int_{\mathcal{C}} \mathrm{d}^{4} x \int_{\mathcal{C}} \mathrm{d}^{4} y\left[G_{a b}(x, y) K_{a b}(x, y)+\phi_{a}(x) K_{a b}(x, y) \phi_{b}(y)\right]
\end{aligned}
$$

Result: ladder resummation, no overcounting

Cornwall,Jackiw, Tomboulis 1974, Calzetta,Hu 1988; Ivanov,Knoll,Voskresensky 1988 Cooper at al (2PI,BVA) 2000

Equations of Motion

are the stationarity conditions:

(a) $\frac{\delta \Gamma[\phi, G]}{\delta \phi_{a}(x)}=-J_{a}(x)-\int_{\mathcal{C}} \mathrm{d}^{4} y\left[K_{a b}(x, y) \phi_{b}(y)\right] \stackrel{!}{=} 0$
(b) $\frac{\delta \Gamma[\phi, G]}{\delta G_{a b}(x, y)}=-\frac{1}{2} K_{a b}(x, y) \stackrel{!}{=} 0 \quad \rightarrow \quad G_{a b}(x, y ; \phi)=\left\langle\mathcal{T}_{\mathcal{C}} \hat{\varphi}(x) \hat{\varphi}(y)\right\rangle_{c}$

Decomposition:
$\Gamma_{b}[\phi, G]=S[\phi]+\frac{i}{2} \operatorname{tr}_{\mathcal{C}}\left[\log \left[G^{-1}\right]\right]+\frac{i}{2} \operatorname{tr}_{\mathcal{C}}\left[G_{0}^{-1} G\right]+\Gamma_{\text {int }}[\phi, G]+$ const
$\Gamma_{f}[\psi, D]=S[\psi]-i \operatorname{tr}_{\mathcal{C}}\left[\log \left[D^{-1}\right]\right]-i \operatorname{tr}_{\mathcal{C}}\left[D_{0}^{-1} D\right]+\Gamma_{\mathrm{int}}[\psi, D]+\mathrm{const}$
With $\quad \Sigma_{f}(x, y) \equiv 2 i \frac{\delta \Gamma_{\text {int }}[G]}{\delta G(y, x)} \quad \Sigma_{s}(x, y) \equiv-i \frac{\delta \Gamma_{\text {int }}[D]}{\delta D(y, x)}$
$\left(\partial_{x}^{2}+m^{2}\right) G_{a b}(x, y)=\int_{\mathcal{C}} \mathrm{d}^{4} z \Sigma_{a b}(x, z ; G, D) G_{b c}(z, y)+\delta_{\mathcal{C}}(x, y) \delta_{a b}$,
$\left({ }_{x}+i m_{f}\right) D_{i j}(x, y)=\int_{\mathcal{C}} \mathrm{d}^{4} z \Sigma_{i k}(x, z ; G, D) D_{k j}(z, y)+\delta_{\mathcal{C}}^{4}(x, y) \delta_{i j}$
\leftarrow equivalent to Kadanoff-Baym equations

EoM: in terms of real time propagators:

$$
\begin{aligned}
F_{i j}(x, y) & =\frac{1}{2}\left(G_{i j}^{>}(x, y)+G_{i j}^{<}(x, y)\right) \\
\rho_{i j}(x, y) & =i\left(G_{i j}^{>}(x, y)-G_{i j}^{<}(x, y)\right),
\end{aligned}
$$

(or with opposite signs for the fermions)

For fermionic fields:

$$
\begin{aligned}
\left(i \not \partial-m-\Sigma_{0}\right) F(x, y) & =\int^{x_{0}} d z \Sigma^{\rho}(x, z) F(z, y)-\int^{y_{0}} d z \Sigma^{F}(x, z) \rho(z, y) \\
\left(i \not \partial-m-\Sigma_{0}\right) \rho(x, y) & =\int_{y_{0}}^{x_{0}} d z \Sigma^{\rho}(x, z) \rho(z, y)
\end{aligned}
$$

For scalar fields:

$$
\begin{aligned}
& \left(\partial_{x}^{2}+m^{2}+\Sigma_{0, i}(x)\right) F_{i j}(x, y)=\int^{y_{0}} d z \Sigma_{i k}^{F}(x, z) \rho_{k j}(z, y)-\int^{x_{0}} d z \Sigma_{i k}^{\rho}(x, z) F_{k j}(z, y) \\
& \left(\partial_{x}^{2}+m^{2}+\Sigma_{0, i}(x)\right) \rho_{i j}(x, y)=\int_{x_{0}}^{y_{0}} d z \Sigma_{i k}^{\rho}(x, z) \rho_{k j}(z, y)
\end{aligned}
$$

Timescales of losing information

Time $\left[\mathrm{m}^{-1}\right]$

Prethermalisation

Damping, isotropisation

Equilibration
Berges, SB, Serreau, Wetterich 2003/4

evolution of the spectrum:

fermions

A growing number of studies...

Scalars:

I+I dim: Cox\&Berges2000,Aarts\&Berges200I,2002 (vs exact, vs classical)
Blagoev\&Cooper\&Dawson\&Mihaila 2001 (BVA)
Berges 2002 ($\mathrm{O}(\mathrm{N})$ resummation)
Gasenzer\&Pawlowski 2007 (an RG approach)
2+I dim: Juhem\&Cassing\&Greinen 2001 (vs transport)
3+Idim: Danielewicz 1984 (nonrelativistic, vs. kinetic theory)
Berges\&Borsanyi 2005 (isotropisation, vs. transport theory)
Muller\&Lindner 2005 (vs. kinetic theory)
Berges\&Serreau 2002 (parametric resonance)
Tranberg\&Arrizabalaga\&Smit 2004,2005 (bg field, tachionic instability)
Tranberg\&Rajantie 2006 (looking for defects)
Aarts\&Tranberg 2008 (inflationary)

Yukawa:

3+I dim: Berges\&Borsanyi\&Serreau/Wettterich 2003
Muller\&Lindner 2007 (vs. kinetic theory)
Cold atoms:
I + I dim: Berges\&Gasenzer(\&Seco\&Schmidt) 2005,2007 (vs classical)
Gasenzer\&Temme 2008 (inhomogeneous)
Braunschadel\&Gasenzer 2008 (vs. transport)

The final state

The propagators become stationary, and the KMS condition becomes valid.

What is the stationary solution?

 from analytics$$
\begin{aligned}
\left(-p_{0}^{2}+\omega_{p}^{2}\right) \tilde{F}(p) & =\int \frac{d \omega}{2 \pi}\left[\frac{\tilde{\Sigma}^{F}(p) \tilde{\rho}(\omega ; \vec{p})}{i\left(p_{0}-\omega-i \epsilon\right)}+\frac{\tilde{\Sigma}^{\rho}(\omega ; \vec{p}) \tilde{F}(p)}{i\left(p_{0}-\omega+i \epsilon\right)}\right] \\
\left(-p_{0}^{2}+\omega_{p}^{2}\right) \tilde{\rho}(p) & =\int \frac{d \omega}{2 \pi}\left[\frac{\tilde{\Sigma}^{\rho}(p) \tilde{\rho}(\omega ; \vec{p})}{i\left(p_{0}-\omega-i \epsilon\right)}+\frac{\tilde{\Sigma}^{\rho}(\omega ; \vec{p}) \tilde{\rho}(p)}{i\left(p_{0}-\omega+i \epsilon\right)}\right]
\end{aligned}
$$

$$
\text { If } \tilde{F}(\omega)=-i\left(\frac{1}{2}+n_{B E}(\omega)\right) \tilde{\rho}(\omega) \longrightarrow \tilde{\Sigma}^{\tilde{F}}(\omega)=-i\left(\frac{1}{2}+n_{B E}(\omega)\right) \tilde{\Sigma}^{\rho}(\omega)
$$

then the two equations are equivalent.
There is a stationary solution that satisfies KMS.
This means late time thermalisation (if $\Sigma^{F / \rho} \neq 0$)

The sunset diagram $(2 \rightarrow 2)$

$$
\begin{aligned}
\Sigma^{<}(\omega, \vec{x}) & =-\frac{\lambda^{2}}{6} \int \frac{d \omega_{1}}{2 \pi} \frac{d \omega_{2}}{2 \pi} \frac{d \omega_{3}}{2 \pi} \delta\left(\omega-\omega_{1}-\omega_{2}-\omega_{3}\right) \\
& \left.=-\frac{\lambda^{2}}{6} \int \frac{d \omega_{1}}{2 \pi} \frac{d \omega_{2}}{2 \pi} \frac{d \omega_{3}}{2 \pi} \delta\left(\omega-\omega_{1}-\omega_{2}-\omega_{3}\right) e^{-\beta \omega_{1}-\beta \omega_{2}-\beta \omega_{3}}, \vec{x}\right) G^{<}\left(\omega_{3}, \vec{x}\right) \\
& G^{<}\left(-\omega_{1}, \vec{x}\right) G^{<}\left(-\omega_{2}, \vec{x}\right) G^{<}\left(-\omega_{3}, \vec{x}\right) \\
& =-\frac{\lambda^{2}}{6} \int \frac{d \omega_{1}}{2 \pi} \frac{d \omega_{2}}{2 \pi} \frac{d \omega_{3}}{2 \pi} \delta\left(\omega-\omega_{1}-\omega_{2}-\omega_{3}\right) e^{-\beta \omega} \\
& =-\frac{\lambda^{2}}{6} \int \frac{d \omega_{1}}{2 \pi} \frac{d \omega_{2}}{2 \pi} \frac{d \omega_{3}}{2 \pi} \delta\left(-\omega-\omega_{1}-\omega_{2}-\omega_{3}\right) e^{-\beta \omega} \\
& =\Sigma^{<}(-\omega, \vec{x}) e^{-\beta \omega}\left(\omega_{1}, \vec{x}\right) G^{<}\left(\omega_{2}, \vec{x}\right) G^{<}\left(\omega_{3}, \vec{x}\right)
\end{aligned}
$$

(similar argument for any two-loop diagram)
The self energy inherits the KMS condition from G.
What we see in numerics is a genuine thermalisation.

Late time is equilibrium

$$
\begin{array}{ll}
G_{E}(\tau ; \vec{p})=\int \frac{d \omega}{2 \pi} \tilde{G}^{<}(\omega, \vec{p}) e^{\tau \omega} \\
\Sigma_{E}(\tau ; \vec{p})=\int \frac{d \omega}{2 \pi} \tilde{\Sigma}^{<}(\omega, \vec{p}) e^{\tau \omega} .
\end{array} \text { and } \quad \begin{gathered}
\text { Euclidean } \\
\left(-\partial_{\tau}^{2}+\omega_{p}^{2}\right) G_{E}(\tau)-\delta(\tau)=-\int d \tau^{\prime} \Sigma_{E}\left(\tau-\tau^{\prime}\right) G_{E}\left(\tau^{\prime}\right) .
\end{gathered}
$$

is equivalent to

$$
\begin{aligned}
& \tilde{F}(\omega)=-i\left(\frac{1}{2}+n_{B E}(\omega)\right) \tilde{\rho}(\omega) \\
& \left.\frac{d \rho(t)}{d t}\right|_{t=0}=1
\end{aligned}
$$

late time
and $\quad\left(\partial_{x}^{2}+m^{2}+\Sigma_{0}\right) \rho(x)=-\int_{0}^{x_{0}} d z^{4} \Sigma^{\rho}(x-z) \rho(z)$

Should we believe the dynamics?

Classical 2PI vs classical simulation.

$\mathrm{I}+\mathrm{I} \mathrm{d}, \mathrm{O}(\mathrm{N}) \mathrm{NLO}$

Yes. In most cases.
(Small enough expansion parameter => exact dynamics)
Topological defects: counterexample! Rajantie\&Tranberg 2006

Suppose you buy 2PI... What should we think about other approaches?

Classical statistical field theory Most modelling of Early Universe fields is based on classical methods: preheating, defects

Do we have a classical - quantum comparison?

Classical vs quantum

high occupancy

Aarts,Berges 2001
$\mathrm{O}(\mathrm{N}) \mathrm{NLO}$

Arrizabalaga,Smit,Tranberg 2004

Defects, low occupancy,Z_{2}, LO

Classical statistical field theory
Most modelling of Early Universe fields is based on classical methods: preheating, defects

Do we have a classical - quantum comparison?
Transport theory
Boltzmann eq does the same resummations as 2PI.

$$
2 p^{\mu} \partial_{\mu}^{x} i \bar{G}^{\gtrless}-\left\{\bar{\Sigma}^{\delta}+\operatorname{Re} \bar{\Sigma}^{R}, i \bar{G}^{\gtrless}\right\}-\left\{i \bar{\Sigma}^{\gtrless}, \operatorname{Re} \bar{G}^{R}\right\}=i \bar{\Sigma}^{<} i \bar{G}^{>}-i \bar{\Sigma}^{>} i \bar{G}^{<}
$$

NLO Lowest Order
Lowest order: 2-to-2 scattering (scalar\&setting-sur

Particle numb	n	Muller,Lindner 2005
gradient	LO or	
expansion	NLO?	

NLO Transport vs 2PI
 S. Juchem et al. / Nuclear Physics A 743 (2004) 92-126

$2+1$ d

$3+1 \mathrm{~d}$ isotropisation

thermalisation

Juchem,Cassing,Greiner 2004
Berges, SB 2005

How to renormalize?

$$
\begin{aligned}
& \text { ? }
\end{aligned}
$$

the Bethe-Salpeter equation

$$
\Lambda=4 \frac{\delta^{2} \Gamma_{2}[G, \Phi]}{\delta G \delta G}
$$

implements a one-channel resummation of the four-point function.

This is the same resummation as in the 2 -point equation.
Renormalisation of this 4-point equation removes all sub-divergences from the 2 -point equation.

Renormalization: the lazy way

Renormalize at T_{1} and T_{2} independently $G^{-1}=G_{0}^{-1}-\Sigma$
The renormalization condition for Σ fixes $\delta m^{2}+\delta \lambda \Omega$, but not δm^{2} and $\delta \lambda$ individually keep $\delta \lambda_{1}=0 \quad \delta \lambda_{2}=0$ and obtain $\delta m_{1}, \delta m_{2}$ and the divergent tadpoles

$$
\begin{aligned}
& \delta m_{1}^{2}=m_{T}^{2}\left(T_{1}\right)+\delta m^{2}+\delta \lambda \varrho_{1} \\
& \delta m_{2}^{2}=m_{T}^{2}\left(T_{2}\right)+\delta m^{2}+\delta \lambda \varrho_{2}
\end{aligned}
$$

2 equations,
2 unknowns: $\delta m^{2} \delta \lambda$

Matching:

$$
m_{T}^{2}(T) \sim \lambda_{R} T^{2}
$$

Perturbative input: this defines the renormalized coupling.
Finiteness is not spoiled by the use of non-resummed input!
This realizes a renormalization condition like:

$$
\left.V\right|_{k^{*}}=\lambda_{R}+\mathcal{O}\left(\lambda_{R}^{2}\right) \quad \text { (at leading order) }
$$

Instead of this one:

$$
\overline{\left.V\right|_{k^{*}}=\lambda_{R}}
$$

Proof of these statements: follows from the Bethe-Salpeter machinery

The 2PI propagator

The 2PI variational propagator: $\quad \frac{\delta \Gamma_{2 \mathrm{PI}}[\Phi, G]}{\delta G(x, y)}=0$

$$
G_{2 \mathrm{Pr}}^{-1}[\Phi]=G_{0}^{-1}[\Phi]-\Sigma[\Phi, G] \longleftarrow \Sigma=2 i \frac{\delta \Gamma_{2}}{\delta G}
$$

Without truncation $G_{2 \text { PI }}$ is the full propagator. If we do truncate at some order:

In the $\mathrm{O}(\mathrm{N})$ model $G_{2 \text { PI }}$ is gapless to given order only In QED $G_{2 \mathrm{PI}}$ is not transversal to given order only.
(This symmetry breaking effect appears at orders higher than the truncation of $\Gamma_{2 \text { PI }}$)
Reason for the apparent failure: only the s-channel was resummed
or from the

standard effective action

At vanishing sources: $\quad \Gamma_{2 \mathrm{PI}}\left[\Phi, G_{2 \mathrm{PI}}[\Phi]\right]=\Gamma[\Phi]$
This is the resumed effective action (non-polynomial)
An alternative definition of the propagator:

$$
\begin{aligned}
& G_{1 \mathrm{PI}}^{-1}=\frac{\delta^{2} \Gamma[\Phi]}{\delta \Phi \delta \Phi}=\frac{\delta^{2} \Gamma_{2 \mathrm{PI}}\left[\Phi, G_{2 \mathrm{PI}}[\Phi]\right]}{\delta \Phi^{2}}
\end{aligned}
$$

Bethe-Salpeter equation appears here naturally

Four point function from 2PI

All three channels are present

Bethe-Salpeter equation resummation in one channel only

restoration of the

Goldstone theorem

s channel only
$\mathrm{s}+\mathrm{t}+\mathrm{u}$ channels
$G_{1 \mathrm{PI}}:$

van Hees,Knoll 2001
Berges,SB,Reinosa,Serreau 2004

restoration of the

Ward identities

$G_{1 \mathrm{PI}}:$

2PI effective action is just a means to
Reinosa,Serreau 2006-7 Carrington,Kovalchuk 2007 ladder-resum the standard effective action

Can we do gauge fields?
 3-loop order
 2-loop order

 Broken gauge invariance: new counterterms appear.

Gauge fixing: Covariant gauge: $\lambda=1 / \xi$ Usual counterterms:

transversal photon + electron
New counterterms:

$\left(e^{4} \log a\right) \sim$	$\delta \lambda G^{\mu \nu} k_{\mu} k_{\nu}$
$\left(e^{4} a^{2}\right) \sim$	$\delta M^{2} G^{\mu \nu} g_{\mu \nu}$
$\left(e^{4} \log a\right) \sim$	$\delta g^{a} G_{\mu \nu} G^{\mu \nu}$
$\left(e^{4} \log a\right) \sim$	$\delta g^{b} G_{\mu}^{\mu} G_{\nu}^{\nu}$

longitudial photon

$$
\left.\frac{\partial \Pi_{L}}{\partial k^{2}}\right|_{k^{*}}=0
$$

$$
\Pi_{L}\left(k^{*}\right)=0
$$

photon self interaction

$$
\text { Bethe-Salpeter -> }\left.\quad V_{L}^{\mu \nu}\right|_{k^{*}}=0
$$

Subdivergency in the ladder: Calculated as the solution of the Bethe-Salpeter equation

The 2PI pressure curve

Pressure is quartically divergent

 \rightarrow we calculate $\frac{p\left(T_{1}\right)-p\left(T_{2}\right)}{T_{1}^{4}-T_{2}^{4}}$$T_{1}$: find the counterterms, calculate the pressure
T_{2} : use the counterterms, calculate the pressure (The regularized equations are solved)

$$
P=\frac{T}{L_{3}} i \Gamma\left[\phi_{0}, D\left(\phi_{0}\right)\right]
$$

$\mathcal{S}=\frac{\partial P}{\partial T}$,
$\mathcal{E}=-P+T \mathcal{S}=T^{2} \frac{\partial}{\partial T}\left(\frac{P}{T}\right)$
(a scalar example)

The pressure curve: QED (parameter: gauge fixing)

Restoration of gauge

parameter independence

Arrizabalaga,Smit 2002
"Strong" gauge parameter independence:
(e.g. Perturbation theory)
pressure (N, e, ξ) is ξ independent for any N
N : loop order, e couling ξ :gauge parameter
"Weak" gauge parameter independence:
(e.g. 2PI effective action)
pressure $(N, e, \xi) \quad \xi$ dependence at $\mathcal{O}\left(e^{2 N+2}\right)$
$N(e, \xi)$: order required for the required precision
$N_{2 \mathrm{PI}}<\mathrm{N}_{\text {pert }}$, and $\mathrm{N}_{2 \mathrm{PI}}(\mathrm{e}, \xi=0)<\mathrm{N}_{2 \mathrm{PI}}(\mathrm{e}, \xi)$

Conclusion

Long live 2P!!

Self-consistent,
Cures secularity,
Renormalisable (and we know how to renormalise)
Gives a prescription for symmetry-respecting propagators Gauge symmetry is restored as we increase the order in g (all gauges are equal, but some gauges are more equal)

We need: more people, more jobs,
more machines.

