Nonequilibrium Quantum Field Theory

Szabolcs Borsanyi University of Sussex

An other setting: defects

see Mark Hindmarsh' talk

Strings appear as topological defects in field theory. Nonequilibrium QFT accounts for their decay. $\xi \gg d$

The classical approach

continuum limit
Bose-Einstein
physical cutoff
fermions

Define a lattice field theory, Solve the 2nd order Klein-Gordon (or Maxwell) equations

$$\begin{split} \Phi_{\mathbf{n}}(t+a_t) + \Phi_{\mathbf{n}}(t-a_t) &- 2\Phi_{\mathbf{n}}(t) - \frac{a_t^2}{a^2} \sum_i (\Phi_{\mathbf{n}+\hat{\mathbf{i}}}(t) + \Phi_{\mathbf{n}-\hat{\mathbf{i}}}(t) - 2\Phi_{\mathbf{n}}(t)) \\ &+ a_t^2 (-\Phi_{\mathbf{n}} + \Phi_{\mathbf{n}}^3 - h) = 0. \end{split}$$

Initial condition:

the field value is sampled from an ensemble that reproduces the n-point functions. Evolution of the ensemble gives the n-point functions at a later time. This evolution is NONPERTURBATIVE

see Jan Smit's talk

The kinetic approach

Particles (balls) collide and interact with a precalculated cross section.

Example: Parton thermalisation with gg→ggg with gg→gg only

Greiner,Xu 2005

Coherence is lost between collisions. Gradient expansion has been used. What does justify it? see also MM Müller's talk

Initial value problem in QFT

Define path integral along the *closed time path* contour

$$G_{ij}(x,y) = F_{ij}(x,y) - \frac{i}{2}\rho_{ij}(x,y)\operatorname{sgn}_{\mathcal{C}}(x_0,y_0)$$

Is the dynamics irreversible?

Thermal equilibrium:

 $\hat{\rho} = e^{-\beta \hat{H}} / \mathrm{Tr} e^{-\beta \hat{H}} \qquad \left\langle \hat{X} \right\rangle = \mathrm{Tr} \hat{X} \hat{\rho}$

Is thermalization possible in closed nonlinear system?

Quantum
Mechanics: Equilibrium is a fixed point of the evolution $\rho \not\rightarrow e^{-\beta \hat{H}}/\text{Tr}e^{-\beta \hat{H}}$ Unitarity!

• $\langle \hat{H} \rangle$ =const. uniquely determines the equilibrium ensemble.

But: $\langle \hat{H}^2 \rangle$, $\langle \hat{H}^3 \rangle$, ... conserved (initial conditions)

- The quantum ensemble cannot converge to equilibrium!
- Still, the quantum average of some selected observables may converge to the equilibrium value:

 $\langle \Phi(x)\Phi(y)\rangle_{\text{noneq}} \longrightarrow \langle \Phi(x)\Phi(y)\rangle_{\text{thermal}}, \text{ as } x_0, y_0 \to \infty$

Perturbation theory fails

Example: a damped oscillator

Ist perturbative order:

0th order th orde 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 15 10 20 25 0 30 $\ddot{x}(t) + 2\gamma \dot{x}(t) + m^2 x(t) = 0$ $x(t) = A \sin(t\sqrt{m^2 - \gamma^2})e^{-t\gamma}$ $x(t) = A \cos(tm)(1 - t\gamma)$

Secular behaviour: the time is part of the expansion parameter!

range

time I

number of pert. orders

A nonperturbative approach: Let's simulate on a lattice!

It really does converge in real time, too!

Toy model: anharmonic oscillator

A diagrammatic approach: the 2PI resummation

The 2PI effective action

$$Z[J,K] = \int \prod_{c=1}^{N} \mathcal{D}\varphi_{c}(x) \exp\left(i \int_{\mathcal{C}} d^{4}x \left[\mathcal{L}(x) + J_{a}(x)\varphi_{a}(x)\right] + \frac{i}{2} \int_{\mathcal{C}} d^{4}x \int_{\mathcal{C}} d^{4}y \left[\varphi_{a}(x) K_{ab}(x,y)\varphi_{b}(y)\right]\right),$$

Ist Legendre transform: effective action (IPI diagrams)
2nd Legendre transform: 2PI effective action (2PI diagrams)

 $W[J,K] = -i\log(Z[J,K]) \quad \delta W[J,K]/\delta J = \phi \quad \delta W[J,K]/\delta K = (\phi^2 - G)/2$ $\Gamma[\phi,G] = W[J,K] - \int_{\mathcal{C}} d^4x \left[J_a(x) \phi_a(x)\right]$ $-\frac{1}{2} \int_{\mathcal{C}} d^4x \int_{\mathcal{C}} d^4y \left[G_{ab}(x,y) K_{ab}(x,y) + \phi_a(x) K_{ab}(x,y) \phi_b(y)\right]$ Cornwall,Jackiw, Tomboulis 1974, Calzetta,Hu 1988; Ivanov,Knoll,Voskresensky 1988

Cooper at al (2PI,BVA) 2000

Equations of Motion

are the stationarity conditions:

(a)
$$\frac{\delta\Gamma[\phi,G]}{\delta\phi_a(x)} = -J_a(x) - \int_{\mathcal{C}} \mathrm{d}^4 y \left[K_{ab}(x,y) \phi_b(y) \right] \stackrel{!}{=} 0$$

(b) $\frac{\delta\Gamma[\phi,G]}{\delta G_{ab}(x,y)} = -\frac{1}{2} K_{ab}(x,y) \stackrel{!}{=} 0 \longrightarrow G_{ab}(x,y;\phi) = \langle \mathcal{T}_{\mathcal{C}}\hat{\varphi}(x)\hat{\varphi}(y)\rangle_{c}$

Decomposition: $\Gamma_{b}\left[\phi,G\right] = S\left[\phi\right] + \frac{i}{2}\mathsf{tr}_{\mathcal{C}}\left[\log\left[G^{-1}\right]\right] + \frac{i}{2}\mathsf{tr}_{\mathcal{C}}\left[G_{0}^{-1}G\right] + \Gamma_{\mathrm{int}}\left[\phi,G\right] + \mathrm{const}$ $\Gamma_{f}\left[\psi,D\right] = S\left[\psi\right] - i\mathsf{tr}_{\mathcal{C}}\left[\log\left[D^{-1}\right]\right] - i\mathsf{tr}_{\mathcal{C}}\left[D_{0}^{-1}D\right] + \Gamma_{\mathrm{int}}\left[\psi,D\right] + \mathrm{const}$

With
$$\Sigma_f(x,y) \equiv 2i \frac{\delta\Gamma_{\text{int}}[G]}{\delta G(y,x)}$$
 $\Sigma_s(x,y) \equiv -i \frac{\delta\Gamma_{\text{int}}[D]}{\delta D(y,x)}$

$$(\partial_x^2 + m^2)G_{ab}(x, y) = \int_{\mathcal{C}} \mathrm{d}^4 z \Sigma_{ab} \left(x, z; G, D \right) G_{bc} \left(z, y \right) + \delta_{\mathcal{C}}(x, y) \delta_{ab},$$

$$(\partial_x + im_f)D_{ij}(x, y) = \int_{\mathcal{C}} \mathrm{d}^4 z \Sigma_{ik}(x, z; G, D)D_{kj}(z, y) + \delta_{\mathcal{C}}^4(x, y) \delta_{ij}$$

equivalent to Kadanoff–Baym equations

EoM: in terms of real time propagators: $F_{ij}(x, y) = \frac{1}{2} \left(G_{ij}^{>}(x, y) + G_{ij}^{<}(x, y) \right)$ $\rho_{ij}(x, y) = i \left(G_{ij}^{>}(x, y) - G_{ij}^{<}(x, y) \right),$ (or with opposite signs for the fermions)

For fermionic fields:

$$(i\partial - m - \Sigma_0) F(x, y) = \int_{y_0}^{x_0} dz \Sigma^{\rho}(x, z) F(z, y) - \int_{y_0}^{y_0} dz \Sigma^{F}(x, z) \rho(z, y)$$
$$(i\partial - m - \Sigma_0) \rho(x, y) = \int_{y_0}^{x_0} dz \Sigma^{\rho}(x, z) \rho(z, y)$$

For scalar fields:

$$\left(\partial_x^2 + m^2 + \Sigma_{0,i}(x)\right) F_{ij}(x,y) = \int_{x_0}^{y_0} dz \Sigma_{ik}^F(x,z) \rho_{kj}(z,y) - \int_{x_0}^{x_0} dz \Sigma_{ik}^\rho(x,z) F_{kj}(z,y) \\ \left(\partial_x^2 + m^2 + \Sigma_{0,i}(x)\right) \rho_{ij}(x,y) = \int_{x_0}^{y_0} dz \Sigma_{ik}^\rho(x,z) \rho_{kj}(z,y)$$

A growing number of studies...

Scalars:

I+Idim: Cox&Berges2000, Aarts&Berges2001,2002 (vs exact, vs classical) Blagoev&Cooper&Dawson&Mihaila 2001 (BVA) Berges 2002 (O(N) resummation) Gasenzer&Pawlowski 2007 (an RG approach)
2+Idim: Juhem&Cassing&Greinen 2001 (vs transport)
3+Idim: Danielewicz 1984 (nonrelativistic, vs. kinetic theory) Berges&Borsanyi 2005 (isotropisation, vs. transport theory) Muller&Lindner 2005 (vs. kinetic theory) Berges&Serreau 2002 (parametric resonance) Tranberg&Arrizabalaga&Smit 2004,2005 (bg field, tachionic instability) Tranberg&Rajantie 2006 (looking for defects) Aarts&Tranberg 2008 (inflationary)

Yukawa:

3+I dim: Berges&Borsanyi&Serreau/Wettterich 2003 Muller&Lindner 2007 (vs. kinetic theory)

Cold atoms:

I + I dim: Berges&Gasenzer(&Seco&Schmidt) 2005,2007 (vs classical) Gasenzer&Temme 2008 (inhomogeneous) Braunschadel&Gasenzer 2008 (vs. transport)

The final state

KMS condition:

Boltzmann equation (if *n* is time dependent)

Before equilibration: F and ρ are related through $n(t, \omega)$.

The propagators become stationary, and the KMS condition becomes valid.

Berges,SB,Serreau 2003, SB 2004

What is the stationary solution? from analytics

$$(-p_0^2 + \omega_p^2)\tilde{F}(p) = \int \frac{d\omega}{2\pi} \left[\frac{\tilde{\Sigma}^F(p)\tilde{\rho}(\omega;\vec{p})}{i(p_0 - \omega - i\epsilon)} + \frac{\tilde{\Sigma}^\rho(\omega;\vec{p})\tilde{F}(p)}{i(p_0 - \omega + i\epsilon)} \right]$$
$$(-p_0^2 + \omega_p^2)\tilde{\rho}(p) = \int \frac{d\omega}{2\pi} \left[\frac{\tilde{\Sigma}^\rho(p)\tilde{\rho}(\omega;\vec{p})}{i(p_0 - \omega - i\epsilon)} + \frac{\tilde{\Sigma}^\rho(\omega;\vec{p})\tilde{\rho}(p)}{i(p_0 - \omega + i\epsilon)} \right]$$

If $\tilde{F}(\omega) = -i\left(\frac{1}{2} + n_{BE}(\omega)\right)\tilde{\rho}(\omega) \longrightarrow \tilde{\Sigma}^{F}(\omega) = -i\left(\frac{1}{2} + n_{BE}(\omega)\right)\tilde{\Sigma}^{\rho}(\omega)$ then the two equations are equivalent.

There is a stationary solution that satisfies KMS. This means late time thermalisation (if $\Sigma^{F/\rho} \neq 0$)

The sunset diagram $(2 \rightarrow 2)$

$$\begin{split} \Sigma^{<}(\omega,\vec{x}) &= -\frac{\lambda^{2}}{6} \int \frac{d\omega_{1}}{2\pi} \frac{d\omega_{2}}{2\pi} \frac{d\omega_{3}}{2\pi} \delta(\omega - \omega_{1} - \omega_{2} - \omega_{3}) \\ G^{<}(\omega_{1},\vec{x})G^{<}(\omega_{2},\vec{x})G^{<}(\omega_{3},\vec{x}) \\ &= -\frac{\lambda^{2}}{6} \int \frac{d\omega_{1}}{2\pi} \frac{d\omega_{2}}{2\pi} \frac{d\omega_{3}}{2\pi} \delta(\omega - \omega_{1} - \omega_{2} - \omega_{3})e^{-\beta\omega_{1} - \beta\omega_{2} - \beta\omega_{3}} \\ G^{<}(-\omega_{1},\vec{x})G^{<}(-\omega_{2},\vec{x})G^{<}(-\omega_{3},\vec{x}) \\ &= -\frac{\lambda^{2}}{6} \int \frac{d\omega_{1}}{2\pi} \frac{d\omega_{2}}{2\pi} \frac{d\omega_{3}}{2\pi} \delta(\omega - \omega_{1} - \omega_{2} - \omega_{3})e^{-\beta\omega} \\ G^{<}(-\omega_{1},\vec{x})G^{<}(-\omega_{2},\vec{x})G^{<}(-\omega_{3},\vec{x}) \\ &= -\frac{\lambda^{2}}{6} \int \frac{d\omega_{1}}{2\pi} \frac{d\omega_{2}}{2\pi} \frac{d\omega_{3}}{2\pi} \delta(-\omega - \omega_{1} - \omega_{2} - \omega_{3})e^{-\beta\omega} \\ G^{<}(\omega_{1},\vec{x})G^{<}(\omega_{2},\vec{x})G^{<}(\omega_{3},\vec{x}) \\ &= \Sigma^{<}(-\omega,\vec{x})e^{-\beta\omega} \end{split}$$
 (similar argument for any two-loop diagram)

The self energy inherits the KMS condition from G. What we see in numerics is a genuine thermalisation.

Late time is equilibrium

$$G_{E}(\tau; \vec{p}) = \int \frac{d\omega}{2\pi} \tilde{G}^{<}(\omega, \vec{p}) e^{\tau \omega}$$

$$\Sigma_{E}(\tau; \vec{p}) = \int \frac{d\omega}{2\pi} \tilde{\Sigma}^{<}(\omega, \vec{p}) e^{\tau \omega}.$$
and
$$(-\partial_{\tau}^{2} + \omega_{p}^{2}) G_{E}(\tau) - \delta(\tau) = -\int d\tau' \Sigma_{E}(\tau - \tau') G_{E}(\tau').$$

is equivalent to

$$\tilde{F}(\omega) = -i\left(\frac{1}{2} + n_{BE}(\omega)\right)\tilde{\rho}(\omega)$$

$$\frac{d\rho(t)}{dt}\Big|_{t=0} = 1$$
and
$$\left(\partial_x^2 + m^2 + \Sigma_0\right)\rho(x) = -\int_0^{x_0} dz^4 \Sigma^{\rho}(x-z)\rho(z)$$

Should we believe the dynamics?

Classical 2PI vs classical simulation.

Aarts,Berges 2001

Yes. In most cases. (Small enough expansion parameter => exact dynamics) Topological defects: counterexample! Rajantie&Tranberg 2006

Suppose you buy 2Pl... What should we think about other approaches?

Classical statistical field theory

Most modelling of Early Universe fields is based on classical methods: preheating, defects

Do we have a classical - quantum comparison?

SB,Hindmarsh 2007

time

Suppose you buy 2Pl... What should we think about other approaches?

Classical statistical field theory

Most modelling of Early Universe fields is based on classical methods: preheating, defects

Do we have a classical - quantum comparison?

Berges, SB 2005

Juchem, Cassing, Greiner 2004

How to renormalize?

van Hees,Knoll 2001 Blaizot,Iancu,Reinosa 2003 Berges,SB,Reinosa,Serreau 2004,2005 Cooper,Mihaila,Dawson 2004,2006

the Bethe-Salpeter equation

$$(V) = (N) + (N)(V)$$

$$\Lambda = 4 \frac{\delta^2 \Gamma_2[G, \Phi]}{\delta G \delta G}$$

implements a one-channel resummation of the four-point function.

This is the same resummation as in the 2-point equation.

Renormalisation of this 4-point equation removes all sub-divergences from the 2-point equation.

(a scalar example)

Renormalization: the lazy way

Renormalize at T_1 and T_2 independently $G^{-1} = G_0^{-1} - \Sigma$ The renormalization condition for Σ fixes $\delta m^2 + \delta \lambda \Omega$, but not δm^2 and $\delta \lambda$ individually keep $\delta \lambda_1 = 0$ $\delta \lambda_2 = 0$ and obtain δm_1 , δm_2 and the divergent tadpoles

$$\delta m_1^2 = m_T^2(T_1) + \delta m^2 + \delta \lambda \, \mathcal{Q}_1$$
$$\delta m_2^2 = m_T^2(T_2) + \delta m^2 + \delta \lambda \, \mathcal{Q}_2$$

2 equations, 2 unknowns: $\delta m^2 \delta \lambda$

Matching:

 $m_T^2(T) \sim \lambda_R T^2$

Perturbative input: this defines the renormalized coupling. Finiteness is not spoiled by the use of non-resummed input!

This realizes a renormalization condition like:

$$V|_{k^*} = \lambda_R + \mathcal{O}(\lambda_R^2)$$

(at leading order)

Instead of this one:

Proof of these statements: follows from the Bethe-Salpeter machinery

The 2PI propagator

The 2PI variational propagator: $\frac{\delta\Gamma_{2\mathrm{PI}}[\Phi,G]}{\delta G(x,y)} = 0$ $\Sigma = 2i\frac{\delta\Gamma_{2}}{\delta G}$ $\Sigma = 2i\frac{\delta\Gamma_{2}}{\delta G}$ Without truncation $G_{2\mathrm{PI}}$ is the full propagator. If we do truncate at some order:

In the O(N) model G_{2PI} is gapless to given order only In QED G_{2PI} is not transversal to given order only.

(This symmetry breaking effect appears at orders higher than the truncation of $~\Gamma_{\rm 2PI}$)

Reason for the apparent failure: only the s-channel was resummed

or from the standard effective action

At vanishing sources: $\Gamma_{2PI}[\Phi, G_{2PI}[\Phi]] = \Gamma[\Phi]$ This is the resummed effective action (non-polynomial)

An alternative definiton of the propagator: $G_{1\text{PI}}^{-1} = \frac{\delta^2 \Gamma[\Phi]}{\delta \Phi \delta \Phi} = \frac{\delta^2 \Gamma_{2\text{PI}}[\Phi, G_{2\text{PI}}[\Phi]]}{\delta \Phi^2}$

Bethe-Salpeter equation appears here naturally

$$(v) = (v) + (v) + (v)$$

Four point function from 2PI

Berges,SB,Reinosa,Serreau 2004

restoration of the Goldstone theorem

s channel only

s+t+u channels

 $G_{1\mathrm{PI}}$

 $G_{2\mathrm{PI}}$

+

van Hees,Knoll 2001 Berges,SB,Reinosa,Serreau 2004

restoration of the Ward identities

2PI effective action is just a means to Colladder-resum the standard effective action

Reinosa,Serreau 2006-7 Carrington,Kovalchuk 2007

The 2PI pressure curve

Pressure is quartically divergent -> we calculate $\frac{p(T_1) - p(T_2)}{T_1^4 - T_2^4}$ $P = \frac{T}{L_3} i \Gamma[\phi_0, D(\phi_0)]$

- T_1 : find the counterterms, calculate the pressure
- T₂ : use the counterterms, calculate the pressure (The regularized equations are solved)

$$S = \frac{\partial P}{\partial T},$$

$$\mathcal{E} = -P + TS = T^2 \frac{\partial}{\partial T} \left(\frac{P}{T}\right)$$

(a scalar example)

The pressure curve: QED (parameter: gauge fixing)

see also Andersen & Strickland 2005

Restoration of gauge parameter independence Arrizabalaga,Smit 2002 "Strong" gauge parameter independence: (e.g. Perturbation theory) pressure(N, e, ξ) is ξ independent for any NN: loop order, e couling ξ: gauge parameter "Weak" gauge parameter independence: (e.g. 2PI effective action) pressure(N,e, ξ) ξ dependence at $\mathcal{O}(e^{2N+2})$ $N(e, \xi)$: order required for the required precision $N_{2PI} < N_{pert}$, and $N_{2PI}(e, \xi=0) < N_{2PI}(e, \xi)$

Conclusion

Long live 2PI!

Self-consistent,

Cures secularity,

Renormalisable (and we know how to renormalise)

Gives a prescription for symmetry-respecting propagators Gauge symmetry is restored as we increase the order in g (all gauges are equal, but some gauges are more equal) Orwell. Animal farm

We need: more people, more jobs, more machines.