Plasma Instabilities in QCD and SYM(?)
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. Why we expect anisotropy in heavy ion collisions
2. Anisotropy + weak coupling — Weibel instability
3. Parametric behavior, strong and weak anisotropy
4. Looking for gauge invariant indicators

. Conclusions
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Heavy ion collisions

Accelerate two heavy nuclei to high energy, slam together.

Just before: Lorentz contracted nuclei
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Heavy ion collisions

Each nucleus is ~ 200 p, n, each built of ~ 50 ¢,¢q, g

.‘oo oo.. % e
.‘ 0: % % “e2 oo ® o"‘ .'Q.
‘. [ ] L ..‘.‘ % [ ] o
° & °o . o Ny,
.° ‘.. ‘:.. ‘: ') ..s". . ‘oo’
. .‘.0.0. .‘o”' :‘oo.....‘ 0’0.. '0
° o °98 ° ° L™ (] ° S
') . 009 O‘ % e © N
0 q° ° oo ° o o % o °
°;~o~ o ® ". o ."‘o o 20,300
.“‘\ ‘: Q.O “ 'e'.? Ce “ L .o .:o.o
‘ok::o nNede o W0 ¢ o %%, <o "..‘ ¢ o
o %% o .“'0. oot °%% .‘.:o
oy °y o8 ."‘ ° °® o
o .‘.‘. ®ce .'. ° ..' ...
0
@ o.‘o ] 4 ‘ ‘: '.'.:.. .}0' ®

It is the q, q, g which scatter.
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After the scattering:

“Flat almond” shaped region of ¢, ¢, g which scattered.

Few thousand. random velocities. Quark-Gluon Plasma
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Momentum Selection

Side-on view of the flat almond as it expands

Back-Moving | _ ~| Only Forward Moving Things
Things inthe 1" T End Up in the Forward Regic
Backwards /
Region
J\ \\ Only Lateral Movers End
7 Up in the Central Region

Automatically leads to strong anisotropy of “particle” flow
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Simpler example of anisotropic particle flow:

interpenetrating beams of plasma
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Magnetic field growth!

Consider the effects of a seed magnetic field B.-p=0andk-p=0
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How do the particles deflect?
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Positive charges:
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No net p. Net current is induced as indicated.

39



Negative charges: same-sign current contribution
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Induced B adds to seed B. Exponential Weibel instability

Linearized analysis: B grows until bending angles become large.
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Note: particles in other directions are stabilizing
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Sum of J from two signs weakens seed magnetic field.

Isotropy: effects from different directions cancel!
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Another way of thinking about Weibel instability:

Think of charges as forming wires:

—_— =~ —» < —>> < Wire with current - = = = = -

— - > - —> - Wire with current —=——=——= -< - -

Parallel wires of like current attract. Opposite current repel.

Unstable to bunching of like-sense wires (filimentation).
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Many other plasma instabilities. Electric instability:

Consider a seed charge asymmetry:

+ +

+ - +

+ charge spends more time where + charges are.

Spontaneous charge clumping.
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How? What about thermodynamics?

None of these occur for isotropic plasmas.

Anisotropic plasma—low entropy, large available free energy.
Maximize entropy by deflecting charges to be more isotropic. F,
B fields do exactly that—and are most efficient method leading

to isotropy and equilibration.

e faster than Weibel by c¢/v

Electric instability: e not generic—present for special plasma

momentum distributions

Weibel instability: Always present for any anisotropy.

34



Hidden assumption: Weak coupling
Above arguments all based on
e Classical field picture of long-wavelength (low k) DOF
e C(lassical particle picture of short-wavelength (high k) DOF
Both require weak coupling ¢*N. < 1 to make sense.

e (Classical field «+— high occupancy.

ny(w) ~ 1/a is strong coupled....

e dense quasiparticles, big o — frequent scattering.
Frequent enough; quasiparticle picture is nonsense

e Dilute quasiparticles, big @ — rapid fragmentation.
Quickly ceases to be dilute
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Can we reach weak coupling in QCD?
a moment of honesty

Higher energy nuclei — denser QGP — smaller g, but
e ¢ gets smaller logarithmically with plasma density

® ¢.7,g get more transparent with energy —

density only grows logarithmically with beam energy

g gets small very slowly.

May not “really” be small at current or even future facilities.
But we'll push ahead anyway
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QED (setting ¢ = 1): Maxwell Equations

d
—E+V XB = ¢
7 + V X ]
i= ) qv
charges

QCD: Yang-Mills equations
d
—E*+V xB* = ¢j* — gfuwc(AJE° + A’ x B)

dt
= Z QIJLTISZQZV

quarks

A: gauge potential. g: strong coupling. fus., T: known

pure numbers. ¢;: (3 component column) “color” of quark.
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Complications in QCD:

e Eight fields (10, b7, 77, ...)
e Three colors of quarks (7, ¢, b)
e gA X B term: equations are nonlinear

e Color of a quark changes as quark moves!

d . a a a
%Qk = —Zg(_Ao +v-A ) k14l

Gauge field A acts as a “connection” for quark color.

Complications irrelevant if gA is small.

A minimal size set by quantum fluctuations — need g small
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Weibel instabilities in QCD?
Yes! Provided

1. You can get a plasma of quarks and gluons

That's what we do in heavy ion collisions!

2. You can get the coupling g to be small

True in limit of high energies and large nuclei

3. You can get the plasma to be anisotropic

Automatic in heavy ion context

4. Gauge field A is not too big.

Problematic

In principle, we get “field saturated plasma instabilities”.
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Hard Loop Expansion

General method to treat plasma screening effects. Valid if
1. Weak coupling oy < 1
2. Separation of scale p > k (or n < p*/g?)
3. Hard modes homogeneous on scale > 1/k

In heavy ion setting, (2) and (3) follow from (1)

Does NOT assume ~ k fields are perturbative.
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Hard loop approach

Treat hard modes with kinetic theory (Vlasov equations)

df (p, %, t)
dp;

1
[Dt—|—V'DX]f(p7X7t) — _5 {gquMia

Perturb in effect of soft modes on hard modes
Dt + V- Dx gdj — _gquﬁz‘Dpifsinglet

Compute induced current and feed into Yang-Mills equations

adj]

DMFC’L’“:Ja”:g/v” y
p
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Good news: |v| =1 so |p| is redundant, integrate it out.

Define (roughly)

LL (CC, U) — f‘p| fadj /g Physically, net color of particles at x moving in v direction

Also write ng'f/ Fsingletd (P — v|p|) = M2 Q(V)
P

Avg value m* = g° [ f/p ~ g°T? characteristic scale of HL's.

System of equations,

DtWa($, ?7) = —U- ﬁwa(w, 27) + mgo Source
-z 0
Goree = 20031 £ Loty 0

D,F"" = J = / v’ W (v)
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Lattice implementation

First: make v space discrete (otherwise, oo DOF /site!)

Y,,, expansion, truncated at some £y, Mmax-

W(v) — Wy, and [, ... turns into /m sums.

Gauge fields: link variables. F* term: standard. SU(2).

W on sites. J on link—average of ¥ on two ends of link.

W Eq. 1'st order: doubling. WW defined only on even spacetime points.

High ¢: “infinite” energy sink. Mock up effect by applying
weak damping to high ¢ (yes we checked...).

25



Consider 3 cases

e Generic departure from anisotropy
e Large anisotropy (early in heavy ion collision)

e Small anisotropy (relevant near equilibrium)
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If gauge fields start with small fluctuations:
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2F
- —— 3+1 dim. non-Abelian
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------ 1+1 dim. non-Abelian

magnetic energy density [in units ofo 2]
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first:  exponential growth.
Fields get nonperturbatively
large. Switches to linear

growth in energy.

Time scales: exp. time shorter than system age.

all the time spent in the linear growth part.

Concentrate on nonperturbative linear part
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Energy in gauge fields grows linearly with time

Field smearing lets us see how much is very IR energy.

B Energy Density (m?%/g?)

0 100 200 300

Time (tm_)
Very soft fields constant. Medium-soft grow slower.
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Instability pumps soft modes. Nonabelian interaction

cascades energy into less-soft modes.

Energy
A Soft Instability
Unstable /\
Modes
Hard
Anisotropic
Modes
Nonabelian
\Qieractions
>
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Occupation g2 f(k)

Coulomb gauge power

spectrum: Initially
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Time development of Coulomb gauge spectrum
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Occupation g2 f(k)

Power-law behavior with moving cutoff
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Strong anisotropy

Hard particles mostly within narrow angle 6 of in-plane.
Questions:

e \What wave vectors k are unstable?

e How fast to they grow?

e How large is their energy when cascade sets in?

e Efficiency in deflecting hard modes
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Scales: Physical role of scale m

m~1! is timescale for back-reaction to become important.

FRIRIRRRIRJ R,
OOOOOOO®

Bt Bt? :
00p ~ — dz~— J= g*nézk ~ I 2B — m22kB
p p D

Compare to the D x B term in Ampere's Law:

DxB~EKkB~j~mt’kB = t~1/m
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Who's unstable for HIGH anisotropy?

Last argument: growth timescale ~ 1/m

Particles must be coherently in same-sign B for 1/m time.

Gauge invariant—you should include Wilson line along particle trajectory

This can fail when

e 3 varies in plane: ki >m

i

e Range 6 of particles’ momenta too big:

/
< ke > /0 = b
S~
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Picture during pertubative growth: B pancakes

B varies in z with ~ 1/k.. but in x,y with ~ 1/m

coherence length.
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What cuts off the growth?

Assume all unstable modes present, comparable amplitude.

Growth can stop due to

e Color randomization Particle color changes in length < 1/m, making

J? wrong component to grow B¢

e Nonabelian interaction D, =0, —iA | and large A| changes B

evolution to take on nonvanishing £, ~ m components

e Nonabelian interaction: color rotation A, termsin YM
equation can make A color precess so it's out of alignment with what J is

doing

Which is which? Probably gauge dependent.

13



How large does B get?

Color randomization: Wilson line U = exp —1A - dl far from
1 onlength 1/m: A, /m~T1or Al ~m

Other nonabelian effects also give A, ~ m.

Magnetic energy

1 1 1 m*

_232 — _2(D X A)2 ™~ _Qkfnaxmz — 2—92

g g g g
Prediction: Energy grows with time as % — g";l; ~ mQZ%aXV
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Prediction is correct
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Weak instabilities

What happens under shear flow if V;v; is small?

Near equilibrium, f(p) = fo +df, fo = [exp(Bv,p*) F 1]~}
Departure 0 f induced by anisotropy

WD _ poa £ o) P (vivj - %vkvk)

Departure restored by particle bending in resulting B.
[[In competition with plain old scattering events.|]

Need determine how much bending as function of ¢ f.
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Weak anisotropy 0 f < fo: write € ~ %

Anisotropic modes: current due to 0 f particles must be

enough to induce instability.

k2~ em?

max

These modes are Landau damped: growth rate ~

implies B? > E?. Also, no cascade.

Maximum size B still the “nonpert. size” B ~ k2

max-



Deflection rate of particles

A d(pi) 2 3
— aY) B lCO < k
q lt h max

Induced approach to equilibrium

d(df) p? ~T
a0

5

A

implies departure from equilibrium of

5 o\
S~ §3T?




Weak anisotropy: prediction
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plasma instabilities dominate. Parametrically
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What about N=4 SYM?

None of previous special to QCD matter content
All of previous should arise at planar diagram level

Should all go through for N'=4 SYM replacing
92 — 92Nc = A
All of previous relied ESSENTIALLY on weak coupling



Gauge invariant ways to look if plasma instabilities happen?

Gauge invariant measurables and expected behavior:
e Behavior of T;; versus 0;v;
e Smeared field operator expectation values
e Features of Wilson lines (indicating anisotropic §)

No guarantee plasma instabilities exist, or are even well

defined, at strong coupling!



Behavior of Tj;

“Weak anisotropy” discussion predicts
T;'j ~ &-vj + (6?})2 + (81])5/2

where first two arise from (boring) scattering

nonanalytic term arises from plasma instabilities.

- U 4 Baier Romatschke Son Starinets Stephanov.
Behavior through (9;v;)* known

Next order....



Smeared field operators

IR fields can be unambiguously extracted by defining

i, _
dr

Build operators with A[7]: contain only k* ~ 7 physics

Apulr] : Aul0] = Ay, DjFj

Equivalent viewpoint: operators not fields are smeared.

Expect: under anisotropic flow, B7;[7] changes:
For Bjorken flow,

o large k: Bj larger, B} smaller
(mostly planar particles with transverse B fields)

e small k: B, larger (unstable modes)



Conclusions

Plasma instabilities are generic prediction of
x weak coupling +

* anisotropic flow

Different scaling depending on degree of anisotropy.

A

x Strong anisotropy: B* ~ 1/6% ¢ ~ 1/6*

+ Weak anisotropy: B? ~ €2, § ~ €3/2.

Plas. instabilities should be there in N=4 SYM for
AL 1

Strong coupling (either theory): may not even be well
defined



Aside: Nielsen-Olsen Instability

What if fields are very “clean” with 1 mode + tiny fluctuations?
B field splits states into Landau levels. Split by s B.

Spin 0 Spin % Spin 1
El — E

0 T 0 T - 0 T
One spin-1 mode unstable. But at nonzero k, it takes

\
D

B2/g2 > m4/9294

max?

E*=k;+ (s,+2)B<0— B>k,



