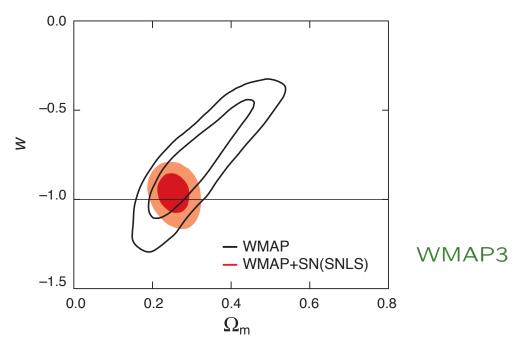
Preheating after inflation

Marco Peloso, Minnesota

- Perturbative vs. nonperturbative inflaton decay
- Preheating → thermalization
- Applications

History of the Universe

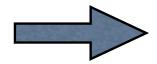
Clear knowledge from BBN on



$$\Omega_m = 0.249^{+0.024}_{-0.031}$$

$$w = -0.97^{+0.07}_{-0.09}$$

$$T_{\gamma} \simeq 2.7 K$$



Dark energy $z \in [0, 0.4]$

Dark matter $z \in [0.4, 10^4]$

Radiation $z \in [10^4, ?]$

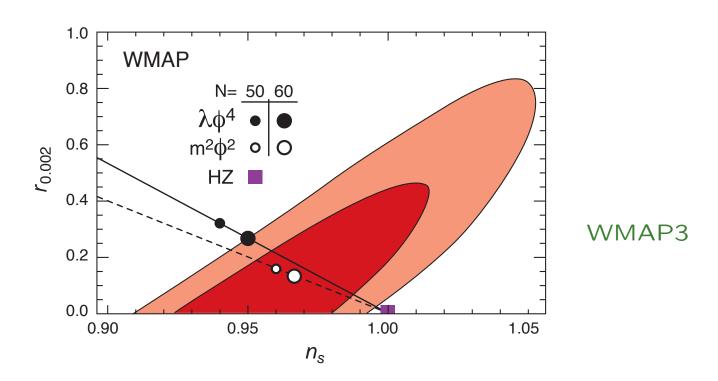
 $z_{\rm BBN} \simeq 10^{10}$

Good theoretical control & data for inflation

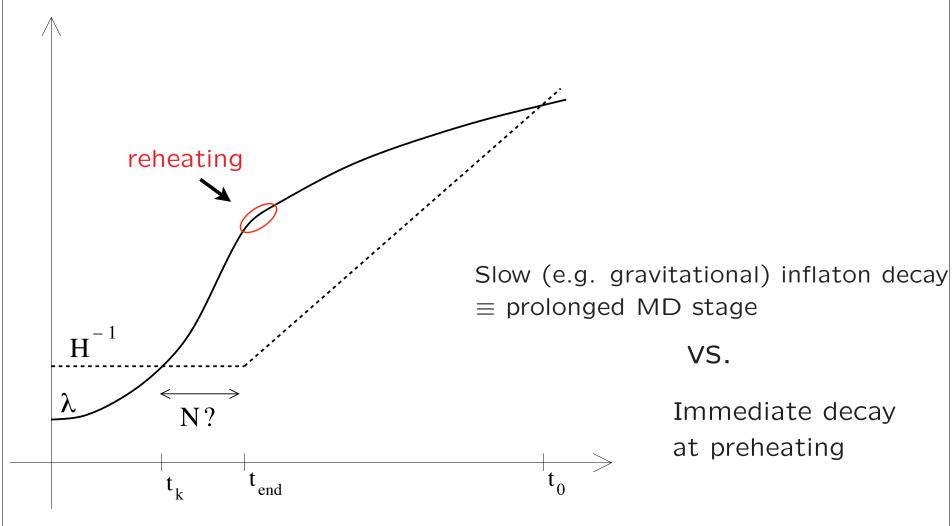
Slow Roll :
$$\epsilon = \frac{M_p^2}{16\,\pi} \left(\frac{V'}{V}\right)^2 \ll 1 \quad , \quad \eta = \frac{M_p^2}{8\,\pi} \frac{V'}{V} \ll 1$$

Large field models

$$V = \phi^{\alpha} \qquad n_s - 1 = -\frac{2 + \alpha}{2N} \qquad r = \frac{4\alpha}{N}$$



Uncertainty on N



 $\Delta N \approx 5 - 10$

Inflation

REHEATING

Hot big-bang cosmology

Unknowns:

Scale of inflation Inflation ϕ Coupling to matter

Require:

 $T>{
m MeV},$ for Nucleosynthesis No gravitinos, $T<10^5-10^7{
m \,GeV}$ Baryon & dark-matter

- 1 Fast decay, slower thermalization
- 2 Slow decay, faster thermalization

Preheating

Kofman, Linde, Starobinsky '94; '97

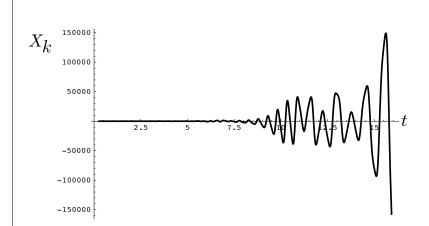
Resonant particle production due to coherent inflaton oscillations

Parametric resonance

$$V = \frac{1}{2}m^2\phi^2 + \frac{g^2}{2}\phi^2\chi^2 \longrightarrow \omega_{\chi}^2 = (k/a)^2 + g^2\phi(t)^2$$

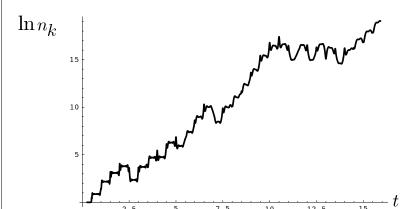
- Nonadiabatic evolution of frequency $~\omega'/\omega^2\gg 1$ whenever $\phi\simeq 0$
- (Quasi) periodic effect → resonance

Large effect if
$$q \equiv \frac{g^2 \phi^2}{4 m^2} \sim 10^{10} g^2 > 1$$



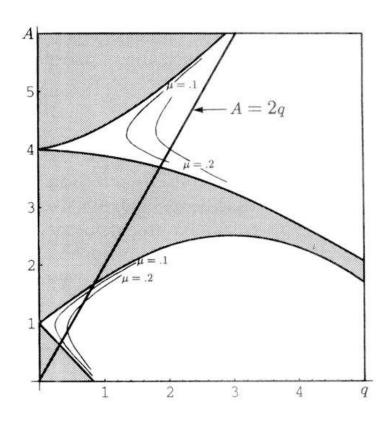
- Stimulated particle production
- Redshift of physical momenta:

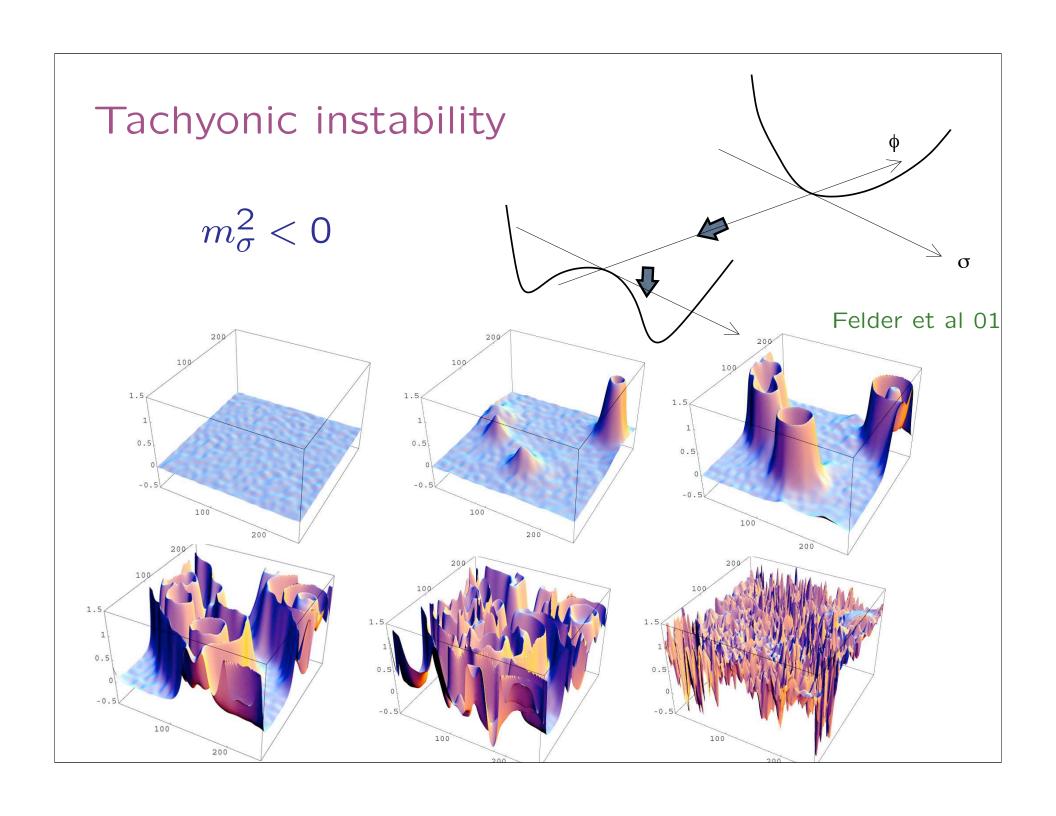
modes cross stability/instability bands

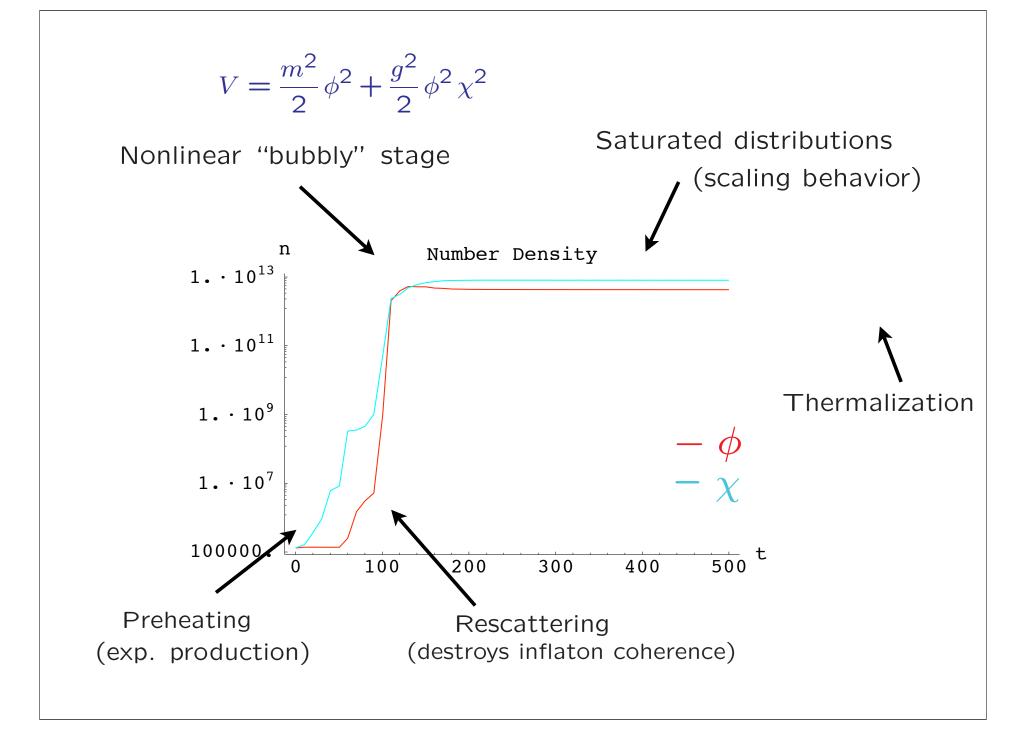


Stability / Instability chart

$$q \equiv \frac{g^2 \phi^2}{4 m^2}$$
 , $A \equiv \frac{k^2}{m^2 a^2} + 2 q$



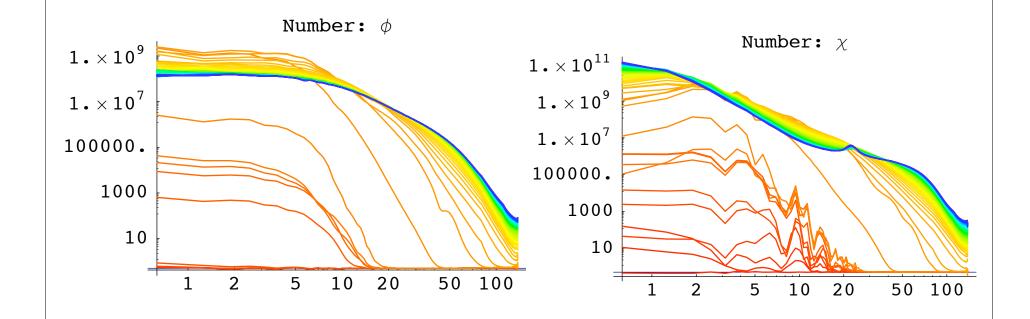




Saturated distributions

with scaling behavior

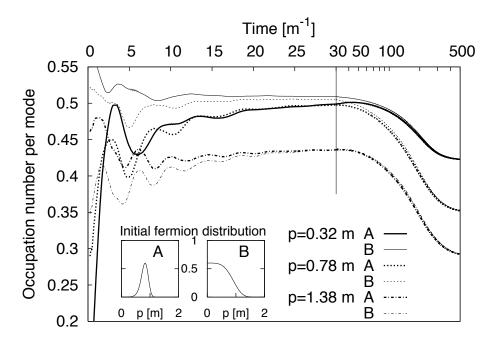
$$n_k \sim 1/g^2 \gg 1$$

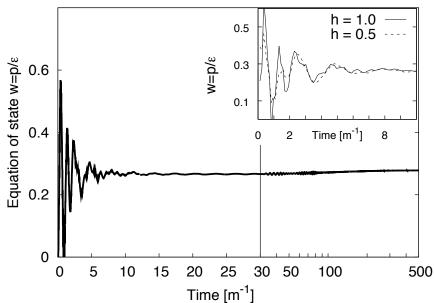


- In many models of inflation, mechanism that exponentially amplifies long—wavelength modes. Highly IR spectrum
- Excitation of $\chi \to \text{excitation of all other fields}$ coupled to it (even if not directly coupled to inflaton)
- Once amplified, fields approach thermal equilibrium by scattering energy into higher momentum modes
- Nontrivial dependence on couplings $(\text{e.g., perturbative decay } h \, \phi \, \bar{X} \, X \, , \; \Gamma \propto h^2 \, \Rightarrow \, T_{\rm rh} \propto h)$
- Equation of state evolves towards radiation domination long before thermalization is established

Pre-thermalization

Two-flavors quarks $\leftrightarrow \sigma$, $\vec{\pi}$





Berges, Borsanyi, Wetterich '04

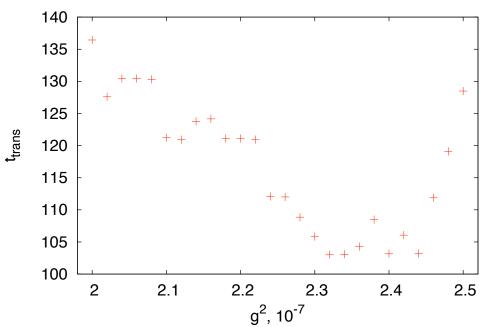
Intermediate equation of state

$$V = \frac{m^2}{2}\phi^2 + \frac{g^2}{2}\phi^2\chi^2$$

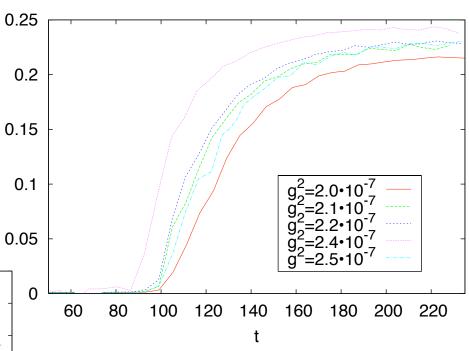
Between matter (w = 0)

and radiation (w = 1/3)

Expansion : $a = t^{\frac{2}{3(1+w)}}$



Podolsky, Felder, Kofman, MP '05

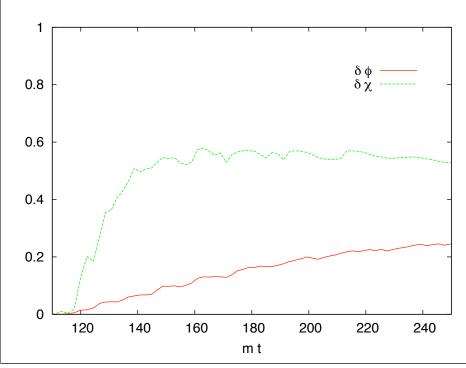


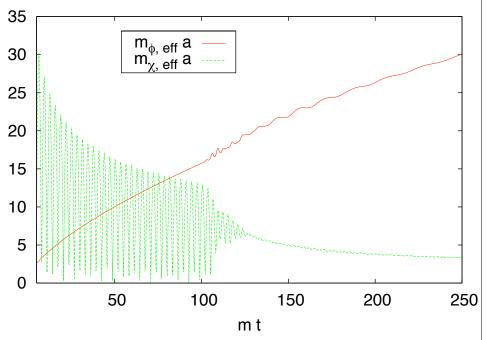
Transition time $\\ \ \, \text{non monotonic in } g^2$

Effective masses

$$V = \frac{m^2}{2}\phi^2 + \frac{g^2}{2}\phi^2\chi^2$$

$$m_{\phi,\text{eff}}^2 = m^2 + g^2 \langle \chi^2 \rangle$$
$$m_{\chi,\text{eff}}^2 = g^2 \langle \phi^2 \rangle$$





Fraction of relativistic quanta

$$k/a > m_{\rm eff}$$

$$\Gamma\left(\phi \to \chi \chi\right) \simeq \frac{g^4 \Phi^2}{8 \pi m} \propto a^{-3}$$
 while $H \propto a^{-3/2}$

Therefore, add trilinear term

$$V = \frac{m^2}{2}\phi^2 + \frac{g^2}{2}\phi^2\chi^2 + \frac{\sigma}{2}\phi\chi^2 + \frac{\lambda}{4}\chi^4$$

Dufaux, Felder, Kofman, MP, Podolsky '06

- Speeds up thermalization $(\chi + \chi \rightarrow \phi, ...)$
- New preheating, $m_{{\rm eff},\chi}^2 <$ 0 at periodically recurring times

Quartic interaction contrasts this, but

Preheating mostly at $\phi \simeq 0$, where cubic term important

Expansion reduces the amplitude of ϕ

Tachyonic resonance

$$\omega_k^2 = k^2 + \sigma \, \phi$$

WKB approx.

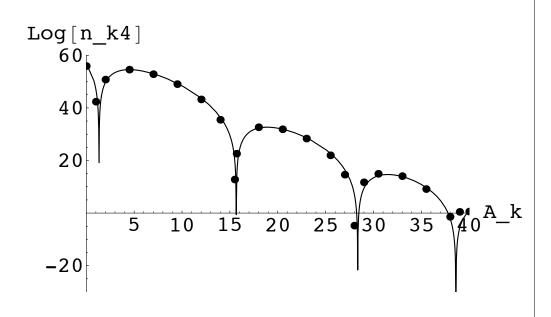
$$\chi_k(t) \simeq \chi_k^j(t) = \frac{\alpha_k^j}{\sqrt{2\omega_k(t)}} \exp\left(-i \int_{t_0}^t \omega_k(t')dt'\right) + \frac{\beta_k^j}{\sqrt{2\omega_k(t)}} \exp\left(i \int_{t_0}^t \omega_k(t')dt'\right) \qquad \omega_k^2(t) > 0$$

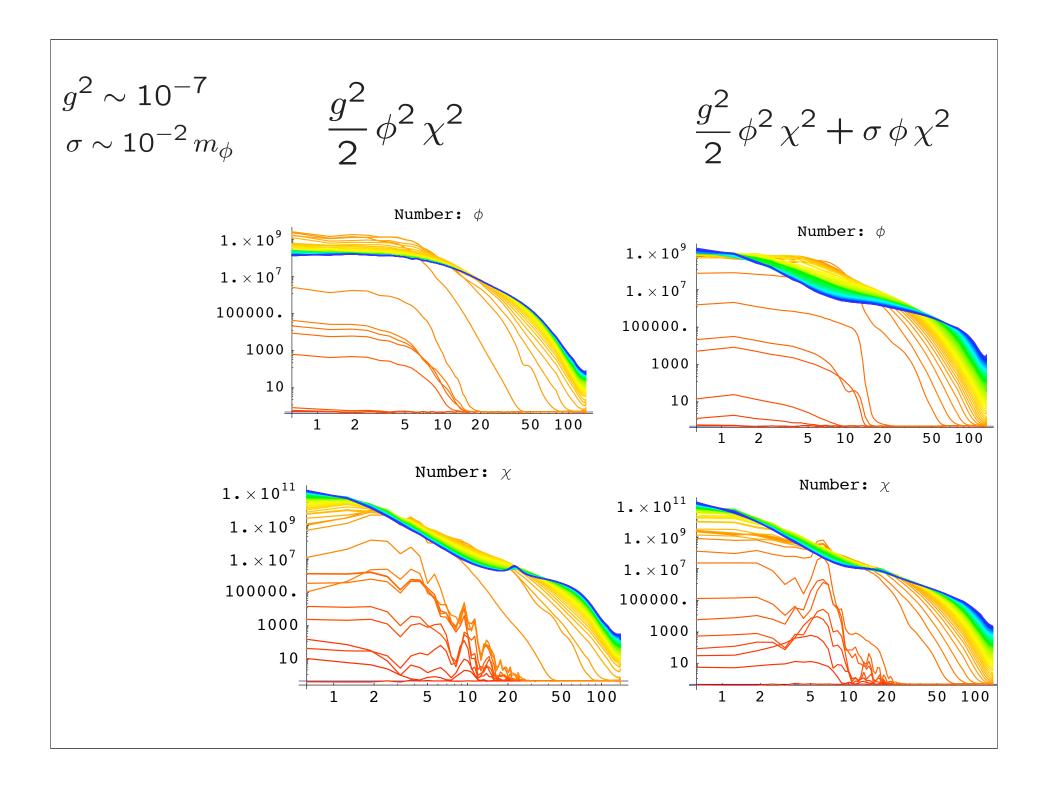
$$\chi_k(t) \simeq \frac{a_k^j}{\sqrt{2\Omega_k(t)}} \exp\left(-\int_{t_{kj}^-}^t \Omega_k(t')dt'\right) + \frac{b_k^j}{\sqrt{2\Omega_k(t)}} \exp\left(\int_{t_{kj}^-}^t \Omega_k(t')dt'\right) \qquad \Omega_k^2(t) = -\omega_k^2(t) > 0$$

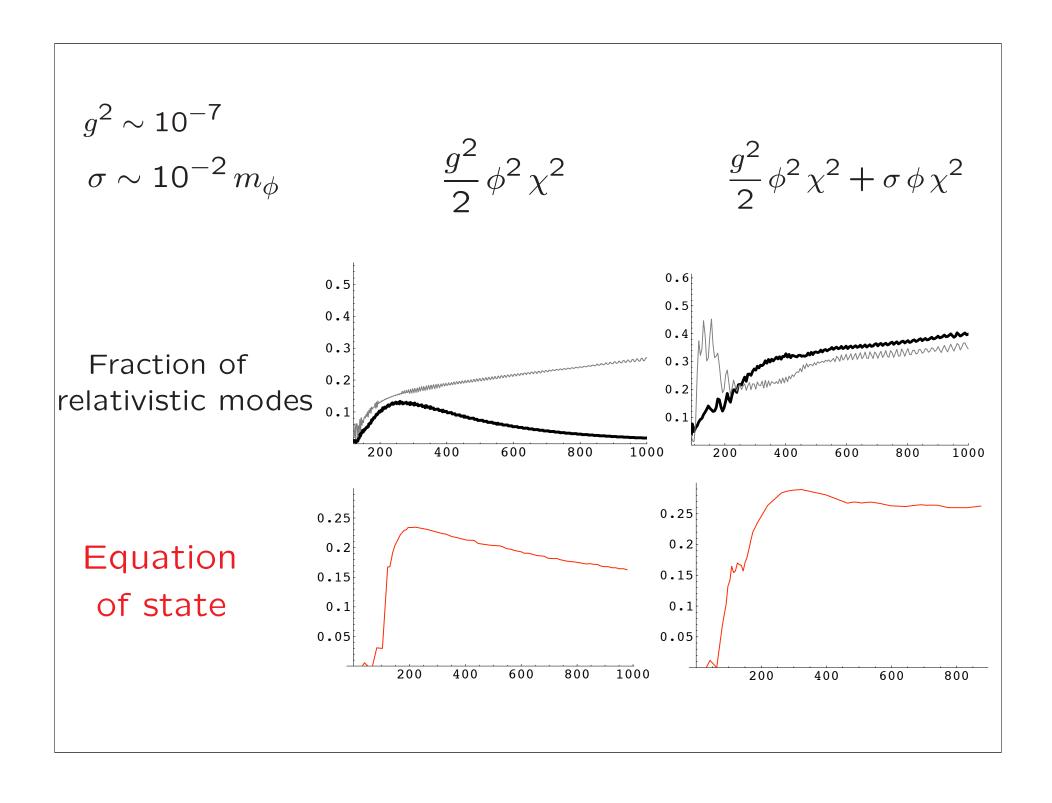
Parametric resonance: instability bands where $\phi\left(t\right)$ "resonate" with ω

Tachyonic resonance:

stability bands where resonance counterbalances the tachyonic instability

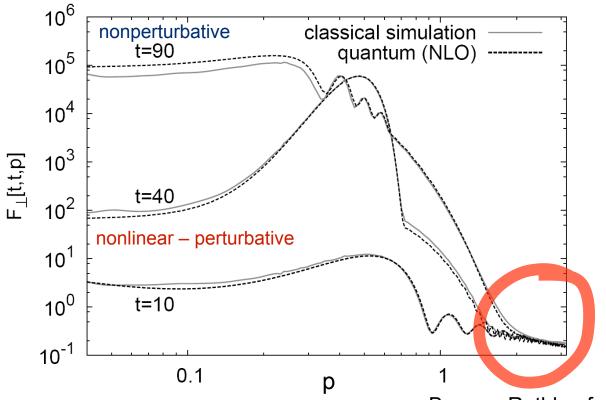






Comparison quantum/classical dynamics

Classical-statistical simulations: Khlebnikov, Tkachev '96; Prokopec, Roos '97; Tkachev, Khlebnikov, Kofman, Linde '98; ...



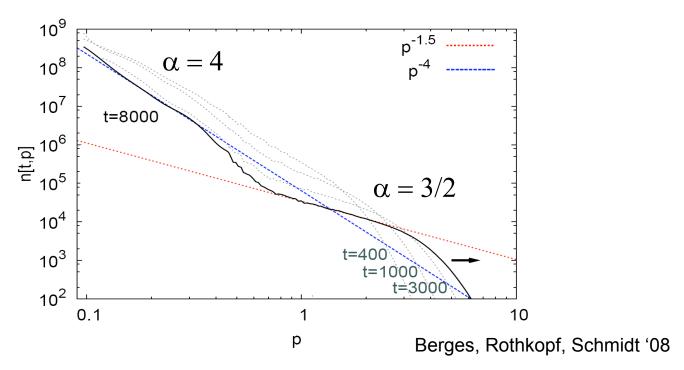
Berges, Rothkopf, Schmidt '08

Practically no quantum corrections at the end of preheating

Accurate nonperturbative description by 2PI 1/N to NLO

(Berger's talk @ KITP)

Comparison analytical/simulation results



Late-time behavior well characterized by non-thermal fixed points!

UV: α = 3/2 coincides with perturbative (Boltzmann) analysis exponent

- a) local four-leg interaction \Rightarrow α = 0, 1, 4/3, 5/3
- b) local three-leg interaction \Rightarrow α = 1, 3/2

Micha, Tkachev '04

(Berger's talk @ KITP)

- Nonthermal fix points; "stuck" there if small couplings
- Thermalization in real life (gauge couplings, fermions).
 What timescale? Reheating temperature?
- Several issues, for which $T_{\rm rh}$ not essential

After all, huge energy density stored in these distributions, while \ll energy density at the time of thermal equilibrium

(dramatic shift from more traditional perturbative reheating)

Production of super-heavy particles

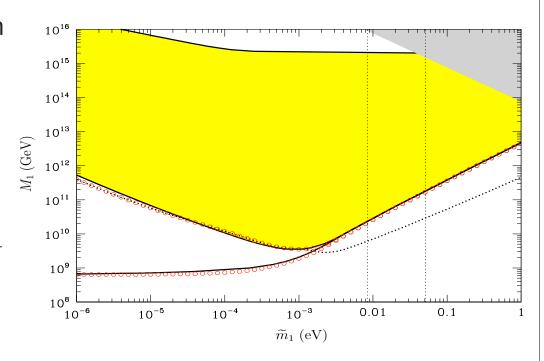
Many models of baryogenesis require heavy masses;
 thermal production can be in conflict with bounds on

 T_{rh} from gravitino problem

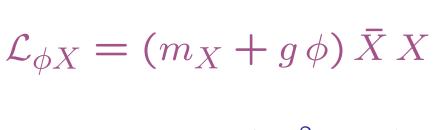
E.g. Thermal leptogenesis from r.h. neutrinos

Buchmuller, Di Bari, Plumacher '04

(main reason, $\delta_{\text{CP}} \propto m_{N_1}$)

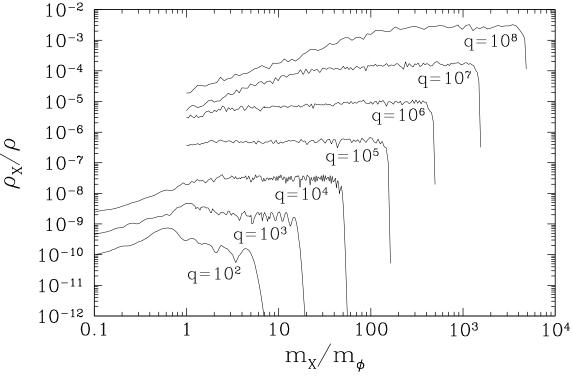


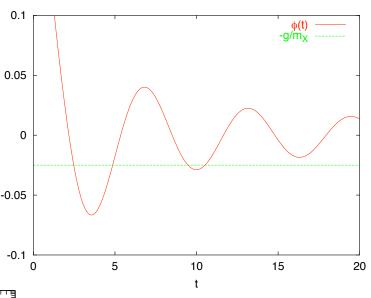
• GUT Baryogenesis $M_{\rm GUT} \gtrsim 10^{14} \, {\rm GeV}$



Preheating $\leftrightarrow \dot{\omega}_k \gtrsim \omega_k^2 \leftrightarrow \dot{m} \gtrsim m^2$

Giudice, M.P., Riotto, Tkachev, '99





$$(m_X)_{\rm max} \sim q^2 = g \, \phi_0/2$$

$$\frac{\rho_X}{\rho_\phi} \propto q \, m_X^{1/2} \left[\log \frac{q^{1/2}}{m_X}\right]^{3/2}$$

M.P., Sorbo '00

Greene, Kofman '98, '00

Gravitational waves

Khlebnikov, Tkachev '97; Easther, Lim '06; Easther, Giblin, Lim '06;

Garcia-Bellido, Figueroa '07; Garcia-Bellido, Figueroa, Sastre '07;

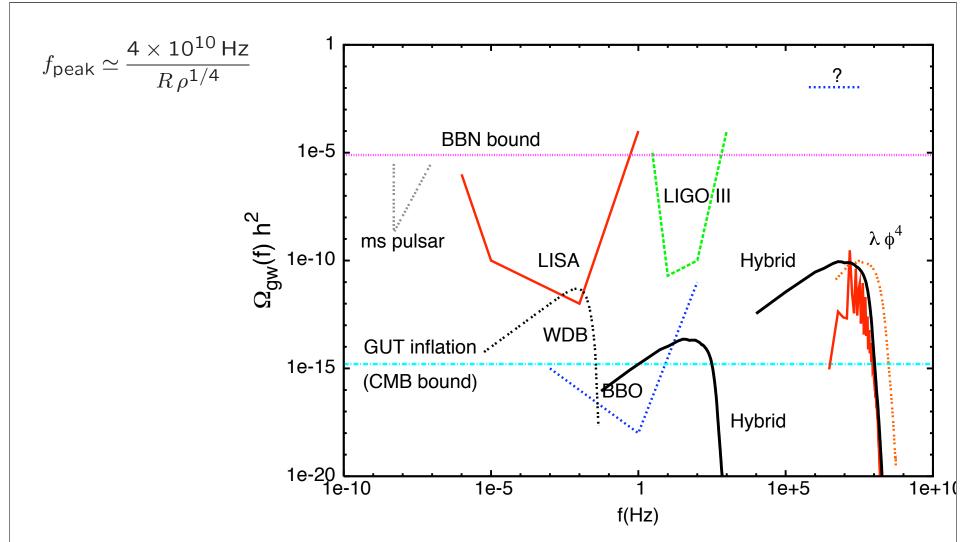
Dufaux, Bergman, Felder, Kofman, Uzan '07

$$h''_{ij} + 2\frac{a'}{a}h'_{ij} - \nabla^2 h_{ij} = 16 \pi G \left(T_{ij} - \langle p \rangle g_{ij}\right)^{TT}$$

$$T_{\mu\nu} = \partial_{\mu}\phi_{a}\,\partial_{\nu}\phi_{a} - g_{\mu\nu}\,\left(\frac{1}{2}\,g^{\rho\sigma}\,\partial_{\rho}\phi_{a}\,\partial_{\sigma}\phi_{a} + V\right)$$

$$\rho_{\text{gw}} = \frac{1}{32\pi G a^4} \langle \bar{h}'_{ij}(\tau, \mathbf{x}) \, \bar{h}'_{ij}(\tau, \mathbf{x}) \rangle_V = \frac{1}{32\pi G a^4} \, \frac{1}{V} \int d^3 \mathbf{k} \, \bar{h}'_{ij}(\tau, \mathbf{k}) \, \bar{h}'^*_{ij}(\tau, \mathbf{k})$$

Evaluated through realizations on the lattice

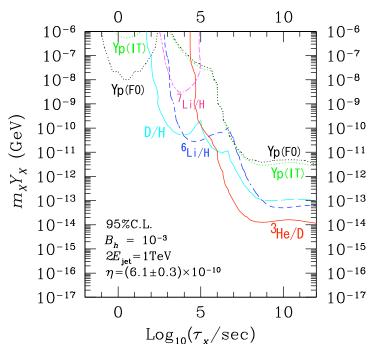


Garcia-Bellido, Figueroa '07

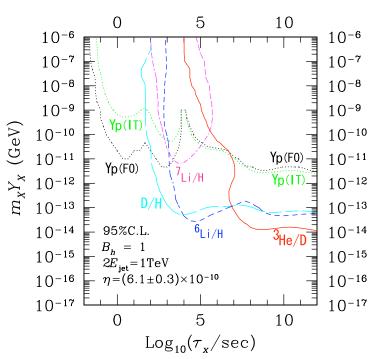
The gravitino problem

Heavy late decaying particles alter the BBN abundances

Radiative decay



Hadronic decay



Kawasaki, Kohri, Moroi '04

$$au_{3/2} = 4 \times 10^5 \, {
m sec} \times N_G^{-1} \left(m_{3/2} / {
m TeV} \right)^3$$

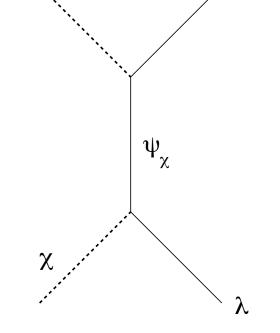
$$m_{3/2} = \text{TeV} \implies Y_X \lesssim 10^{-14} \text{(radiative)}, Y_X \lesssim \Rightarrow 10^{-17} \text{(hadronic)}$$

Gravitino thermal production

$$\frac{dn_{3/2}}{dt} + 3Hn_{3/2} = \langle \sigma | v | \rangle n_T^2$$

$$T^6$$

$$\frac{10^{-2}}{M_p^2}$$



Most of the production in the first Hubble time $(H^{-1} \sim M_p/T^2)$

$$n_{3/2} \approx \frac{10^{-2} T^6}{M_p^2} \times \frac{M_p}{T^2} \Rightarrow \frac{n_{3/2}}{s} \approx 10^{-2} \frac{T}{M_p} \Rightarrow T \lesssim 10^{5-7} \,\text{GeV}$$

- Small $T_{\text{rh}} \equiv$ late inflaton decay; energy "frozen" in the coherent oscillations until diluted by expansion
- Rescattering \rightarrow distributions far from thermal; but $ho \gg \left(10^9\,{\rm GeV}\right)^4$. Compute gravitino production when they form, $t_* \simeq 120/m$.

$$V = \frac{1}{2} m^2 \phi^2 + \frac{g^2}{2} \phi^2 \chi^2 + h \chi \bar{\psi}_\chi \psi_\chi \qquad \text{Yukawa interaction}$$
 as 2nd vertex

Rough estimates suggest overproduction for $h \gtrsim 10^{-7}$ (limit on g in concrete models)

Other applications

- Non-gaussianity (Chambers' talk)
- Modulated perturbations
- Primordial magnetic fields (Smit's talk)
- Electroweak baryogenesis
- Nonthermal symmetry restoration

Lot of fun!

Conclusions

Cosmology = nonequilibrium physics

We know that our universe thermalized, but

Only direct evidence $T_{\rm rh} > {\rm MeV}$

Theoretical input needed (model $\rightarrow T_{rh}$)

 Several questions asked / answered even without this knowledge