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Fig. 15.— Constraints on w, the equation of state of dark energy, in a flat universe

model based on the combination of WMAP data and other astronomical data.
We assume that w is independent of time, and ignore density or pressure fluc-

tuations in dark energy. In all of the figures, WMAP data only constraints are
shown in blue and WMAP + astronomical data set in red. The contours show
the joint 2-d marginalized contours (68% and 95% confidence levels) for Ωm and

w. (Upper left) WMAP only and WMAP + SDSS. (Upper right) WMAP only and
WMAP + 2dFGRS. (Lower left) WMAP only and WMAP+SN(HST/GOODS).

(Lower right) WMAP only and WMAP+SN(SNLS). In the absence of dark en-
ergy fluctuations, the excessive amount of ISW effect at ! < 10 places significant

constraints on the models with w < −1.
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Fig. 14.— Joint two-dimensional marginalized contours (68% and 95% confidence
levels) for inflationary parameters (r0.002, ns). We assume a power-law primor-

dial power spectrum, dns/d ln k = 0, as these models predict a negligible amount
of running index, dns/d lnk ≈ −10−3. (Upper left) WMAP only. (Upper right)
WMAP+SDSS. (Lower left) WMAP+2dFGRS. (Lower right) WMAP+CBI+VSA.

The dashed and solid lines show the range of values predicted for monomial in-
flaton models with 50 and 60 e-folds of inflation (equation (13)), respectively.

The open and filled circles show the predictions of m2φ2 and λφ4 models for 50
and 60 e-folds of inflation. The rectangle denotes the scale-invariant Harrison-

Zel’dovich-Peebles (HZ) spectrum (ns = 1, r = 0). Note that the current data
prefers the m2φ2 model over both the HZ spectrum and the λφ4 model by likeli-
hood ratios greater than 12. (δχ2 > 5)
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Conclusions

• Reheating belongs to the standard paradigm of cosmology.
Yet, it is the most uncertain stage in the history of the universe,
MeV <∼ Trh <∼ 109 GeV

• Unsettled issues include generation of very massive particles,
M <∼ Treh, gravitational relics, connection Ninfl ↔ λ0, modulated
perturbations

• While basic formalism is known, major advance may require
improvement of numerical techniques, or development of scaling
solutions for more realistic cases
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See also Shuhmaher, Brandenberger ’05, as a solution to moduli problem
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Require:

Thermal bath T > MeV, for Nucleosynthesis

Matter / anti–matter asymmetry

Avoid overproducting gravitinos, T < 109GeV

T > MeV, for Nucleosynthesis

No gravitinos, T < 109 GeV

ω ∼ k/a ∼ m

ω̇ ∼ g φ̇ ∼ g m φ

⇒
ω̇

ω2
∼

g φ

m
∼ g

1018 GeV

1013 GeV
∼ 105 g

|Φ|, |Φ̃|/R3/2

m̃ ∼ 3.7m

G0/F0 ∼ 30

n1 + n2 + n3 (k = 0)

Production whenever

|Φ| " |Φ̃|

Baryon & dark–matter

Theoretical input needed (model → Trh)

• Several questions asked / answered even

without this knowledge

(limit on g in concrete models)

Buchmuller, Di Bari, Plumacher ’04

No gravitinos, T < 105 − 107 GeV
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of 5. The theory of this effect is very similar to the theory
of self-reproduction of an inflationary universe, where in
most points the inflaton field rolls down, but those parts
of the universe where it jumps up continue growing ex-
ponentially [2].

As a result, parametric resonance does take place.
However, in order to describe it some new methods of in-
vestigation of parametric resonance should be developed.
We will do this in the next section.

Stochastic resonance occurs only during the first part
of the process, when the effective parameter q is very
large and the resonance is very broad. Gradually the am-
plitude of the field φ decreases, which makes q smaller.
Expansion of the universe slows down, the field stays in
each resonance band for a longer time, and eventually the
standard methods of investigation based on the Mathieu
equation become useful again. As we will show in Sec.
VII E, stochastic resonance ends and the standard meth-

ods become useful after the first q1/4
0 /

√
2π oscillations,

which may happen even before the effective parameter q
decreases from q0 " 1 to q ∼ 1, see Eq. (79). One of
the manifestations of the transition from the stochastic
resonance to a regular one is a short plateau for lnnk

which appears in Fig. 5 for 10 <∼ t <∼ 15. This plateau
corresponds to the time when the resonance is no longer
stochastic, and the mode Xk appears in the region of sta-
bility, which divides the second and the first instability
band of the Mathieu equation, see Fig. 7.
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FIG. 5. The same process as in Fig. 4 during a longer

period of time. The parameter q = g2
Φ

2

4m2 decreases as t−2

during this process, which gradually makes the broad reso-
nance more and more narrow. As before, we show time t in
units of 2π

m , which corresponds to the number of oscillations
of the inflaton field.

To get a better understanding of this effect one should
continue our calculations for a longer period of time, see
Fig. 6. At t > 15 the process does not look like a broad
resonance anymore, but the amplitude still grows expo-
nentially at a rather high rate until the amplitude of the
field Φ becomes smaller than m/g, which corresponds to
q ∼ 1/3 − 1/4. Soon after that the resonance ceases to
exist and the amplitude stabilizes at some constant value.
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FIG. 6. The same process during a longer time, which is
shown in the units mt

2π , corresponding to the number of oscilla-
tions N . The figures show the growth of the mode Xk for the
momentum k corresponding to the maximal speed of growth
of nk. In this particular case k ∼ 4m. Towards the end of
this period, after approximately 25 oscillations of the infla-
ton field, the resonance ceases to exist, and the occupation
number nk becomes constant.

The time tf and the number of oscillations Nf at the
end of parametric resonance in an expanding universe can
be estimated by finding the moment when gΦ ≈ gMp

3mt is
equal to m:

tf ≈
gMp

3m2
, Nf ≈

gMp

6πm
. (41)

As one can check, this estimate for our case (m =
10−6Mp, g = 5 × 10−4) gives Nf ∼ 26.5, which is in
good agreement with the results of our computer calcu-
lations shown in Fig. 6. A small disagreement (about
10%) appears because our criterion for the end of the
resonance gΦ ∼ m was not quite precise: the resonance
ends somewhat earlier, at gΦ ∼ 1.1m.

This more exact result can be deduced from Fig. 7,
which shows that the first instability band for k = 0
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Resonant particle production due to coherent inflaton oscillations
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m2 φ2 +
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φ2 χ2

⇒ ω2
χ = (k/a)2 + g2 φ (t)2

• Excitation when ω̇χ > ω2
χ

• Periodic “driving force” → resonant instability bands

ω2 ∼ m2 + g2 φ2 ⇒ g2 >∼
m2

φ2 ∼ 10−6

• Stimulated particle production

• Redshift: modes cross stability/instability bands
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Slow (e.g. gravitational) inflaton decay

≡ prolonged MD stage

vs.

Immediate decay

at preheating

∆N ≈ 5 − 10

• Nonadiabatic evolution of frequency ω′/ω2 % 1

whenever ψ & 0

• (Quasi) periodic effect → resonance

Large effect if q ≡
g2 ψ2

4m2
∼ 10−10 g2
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LψX = (mX + g ψ) X̄ X
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resonance. The theory of this effect (impact of three-legs vertices on parametric resonance) was given in Section IV.
Meanwhile in model C, where preheating occurs through tachyonic resonance only, this stage takes only one inflaton
oscillation, showing the efficiency of the effect.
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After preheating ends there is a brief violent stage of rescattering, followed by a much longer stage of weak turbulence
during which the spectra cascade towards UV and IR modes, gradually approaching kinetic equilibrium. We can see
in Figures 4 and 5 that this cascade occurs faster in the presence of a trilinear term, i.e. in models B and C compared
to model A. In Figure 6 we plot k2ωknk for δφ quanta, which corresponds to the contribution of these modes to the
total energy density of the system at the end of the simulations. We see that in the presence of the trilinear interaction
the spectrum is spread much more strongly towards the UV. This means that more δφ quanta are relativistic in this
case. This will be important for the following discussion.

Now we turn to the evolution of the equation of state (EOS), see Figure 7. In model A, where the trilinear
interaction is absent, the equation of state rises to roughly 1/4 and then starts falling back towards zero. In this
model the EOS will never reach w = 1/3 because the massive inflaton particles cannot decay completely [10]. In the
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FIG. 3: The ratio of pressure over energy density w as a func-
tion of time. The inset shows the early stages for two different
couplings and demonstrates that the prethermalization time
is independent of the interaction details.

tion, respectively [6]:

np(t)
!
= [exp (ωp(t)/Tp(t)) ± 1]−1 . (2)

This definition is a quantum mechanical version of its
classical counterpart as defined by the squared “gen-
eralized velocities” [7]. In thermal equilibrium with
ωp !

√

p2 + M2 and Tp = Teq Eq. (2) yields the fa-
miliar occupation numbers (µ = 0). Here the mode fre-

quency ω(f,s)
p (t) is determined by the peak of the spec-

tral function for given time and momentum, as detailed
in Ref. [6]. In Fig. 2 we show the fermion and scalar
mode temperature as a function of momentum for var-
ious times t " tdamp. One observes that at late times,
when thermal equilibrium is approached, all fermion and
scalar mode temperatures become constant and agree:

T (f)
p (t) = T (s)

p (t) = Teq. In contrast, there are sizeable
deviations from the thermal result even for times consid-
erably larger than the characteristic damping time.

Kinetic prethermalization: In contrast to the rather
long thermalization time, prethermalization sets in ex-
tremely rapidly. In Fig. 3 we show the ratio of pres-
sure over energy density, w = p/ε, as a function of time.
One observes that an almost time-independent equation
of state builds up very early, even though the system is
still far from equilibrium! The prethermalization time
tpt is here of the order of the characteristic inverse mass
scale m−1. This is a typical consequence of the loss of
phase information by summing over oscillating functions
with a sufficiently dense frequency spectrum. In order
to see that this phenomenon is not related to scattering
or to the strength of the interaction, we compare with a
smaller coupling in the inset and observe good agreement
of both curves. The dephasing phenomenon is unrelated
to the scattering-driven process of thermalization.

Given an equation of state, the question arises whether
there exists a suitable definition of a global kinetic tem-
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FIG. 4: Chemical temperatures for scalars (upper curves) and
fermions (lower curves) for different values of the coupling h
and Teq. We also show the kinetic temperature Tkin(t) (solid
line), which prethermalizes on a very short time scale as com-
pared to chemical equilibration.

perature Tkin. In contrast to a mode quantity such as
Tp(t), a temperature measure which averages over all mo-
mentum modes may prethermalize. Building on the clas-
sical association of temperature with the mean kinetic
energy per degree of freedom, we use here a definition
based on the total kinetic energy Ekin(t):

Tkin(t) = Ekin(t)/ceq . (3)

Here the extensive dimensionless proportionality con-
stant ceq = Ekin,eq/Teq is given solely in terms of equilib-
rium quantities [23]. Since total energy is conserved, the
time scale when “equipartition” is reached (i.e. Ekin/E
is approximately constant) also corresponds to a time-
independent kinetic temperature. The latter equals the
equilibrium temperature Teq if Ekin/E has reached the
thermal value.

The solid line of Fig. 4 shows Tkin(t) normalized to the
equilibrium temperature (for Teq/m = 1). One observes
that an almost time-independent kinetic temperature is
established after the short-time scale tpt ∼ m−1. The
time evolution of bulk quantities such as the ratio of
pressure over energy density w, or the kinetic temper-
ature Tkin, are dominated by a single short-time scale.
These quantities approximately converge to the thermal
equilibrium values already at early times and can be used
for an efficient “quasi-thermal” description in a far-from-
equilibrium situation!

Chemical equilibration: In thermal equilibrium the rel-
ative particle numbers of different species are fixed in
terms of temperature and particle masses. A system
has chemically equilibrated if these ratios are reached,
as observed for the hadron yields in heavy ion colli-
sions [14]. Obviously, the chemical equilibration time
tch will depend on details of the particle number chang-
ing interactions in a given model and tch ≤ teq. In
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FIG. 1: Fermion occupation number n(f)(t; p) for three dif-
ferent momentum modes as a function of time. The evolution
is shown for two different initial conditions with same energy
density. The long-time behavior is shown on a logarithmic
scale for t ≥ 30m−1.

even substantially larger separation of scales is observed
in classical field theories [11, 12, 13] as compared [4] to
the corresponding quantum theories.

In this letter we consider the nonequilibrium evolution
of quantum fields for a low-energy quark-meson model,
which takes into account two quark flavors with a Yukawa
coupling ∼ h to a scalar σ-field and a triplet of pseu-
doscalar pions, "π. The theory corresponds to the well-
known “linear σ-model”, which incorporates the chiral
symmetries of massless two-flavor QCD. The classical ac-
tion reads

S =

∫

d4x
{

ψ̄i∂/ψ +
1

2
[∂µσ∂µσ + ∂µ"π∂µ"π]

+ hψ̄ [σ + iγ5"τ"π] ψ − V (σ2 + π2)
}

. (1)

We consider a quartic scalar self-interaction V (σ2+π2) =

m2
0

(

σ2 + π2
)

/2 + λ
(

σ2 + π2
)2

/(4!N2
f ) with Nf = 2.

The employed couplings are taken to be of order one, and
if not stated otherwise h = λ = 1. We emphasize that the
main results of this letter about prethermalization are in-
dependent of the detailed values of the couplings. Here
we use the two-particle irreducible (2PI) effective action
to two-loop order [19]. In Ref. [6] it has been shown that
this approximation can be used to study the far-from-
equilibrium dynamics as well as the late-time approach
to quantum thermal equilibrium. The dynamics is solved
numerically without further approximations (cf. Ref. [6]
for calculational details). All quantities will be given in
units of the scalar thermal mass m [20].

Thermalization: Nonequilibrium dynamics requires
the specification of an initial state. A crucial question of
thermalization is how quickly the nonequilibrium system
effectively looses the details about the initial conditions,
and what are the characteristic stages of a partial loss
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FIG. 2: Fermion and scalar mode temperatures T (f,s)
p (t) as a

function of momentum p for various times.

of information. Thermal equilibrium keeps no memory
about the time history except for the values of a few con-
served charges. In Fig. 1 we show the effective occupation
number density of fermion momentum modes, n(f)(t; p),
as a function of time for three different momenta [21].
The plot shows two runs denoted as (A) and (B) with
different initial conditions but same energy density. Run
(A) exhibits a high initial particle number density in a
narrow momentum range around ±p. This situation is
reminiscent of two colliding wave packets with opposite
and equal momentum. We emphasize, however, that we
are considering a spatially homogeneous and isotropic en-
semble with a vanishing net charge density. For run (B)
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III. OUTPUT OF THE CALCULATIONS

A. The Calculations

We performed three-dimensional lattice simulations for
the model of Section II. Our grid was a 256× 256 × 256
cube with a comoving edge size L = 10/m, which corre-
sponds to a comoving grid spacing of dx ≈ 0.04/m. As
energy flows towards the UV end of the spectrum the
simulations eventually reach a point where the grid spac-
ing is too large to capture the important UV physics.
By monitoring the spectra of the fields, however, we can
verify that these simulation parameters were adequate to
capture the relevant IR and UV physics well past the end
of preheating. The time step was dt = 0.001/m and the
inflaton mass was m = 10−6Mp. We used values of the
coupling near g2 = 10−7 This value is optimal because
it is large enough to produce highly efficient preheating,
but small enough that the occupation numbers nk ∼ 1/g2

produce strong rescattering. The results should be quali-
tatively similar for a wide range of values of g2, but would
require more IR and/or more UV to simulate accurately.

To probe later times and wider ranges of the couplings
it will be necessary to extend the lattice simulations.
This can be done with a parallelized version of the sim-
ulation code LATTICEEASY (currently under construc-
tion), or by combining the straightforward lattice simu-
lations with other methods, like the equations for a large
number of weakly coupled oscillators [22]. We intend to
pursue both of these approaches in subequent work.

In the rest of this section we present the results of our
simulations.

B. Equation of State

The time evolution of the EOS w(t) for different cou-
plings is shown in Figure 1. Each point plotted on this
figure represents the value of w averaged over a complete
inflaton oscillation. This represents one of the main re-
sults of our study.

Immediately after inflation, the EOS averaged over in-
flaton oscillations is w = 0. It sharply changes at the end
of preheating.

There are at least three important points worth enpha-
sizing about the evolution of w.

i) First, the transition of the EOS from w = 0 to the
value w ∼ 0.2 − 0.3 occurs very sharply, within a time
interval ∼ 10−36 sec.

Indeed, recall that the unit of time on the plots is 1/m,
where m is the inflaton mass, i.e. 10−37 sec. The first
stage of preheating is completed within about a hundred
of these units, i.e., 10−35 sec. The rise of w and gradual
saturation takes roughly the same time.

ii) Second, the dependence of w(t) on the coupling g2

for resonant preheating is a non-monotonic function of
g2.
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FIG. 1: Evolution of the equation of state w = w(t) as a
function of time (given in units of m−1) for various couplings
g2 around g2 = 2 × 10−7.

This is to say that the time during which preheating
comes to an end is very weakly (logarithmically) depen-
dent on the coupling. As seen from Figure 1 the curves
w(t) begin to shift to the left towards an earlier end of
preheating, as we vary g2 by 5%. However, at some point
the curves stop moving to the left and instead begin to
return toward the right. As we change g2 by about 25%,
the cycle repeats. As we vary g2, the function w not
only shifts, but it also varies its detailed shape. Still,
to characterize these variations, we pick up the moment
where w is equal to the value 0.15 (just for convenience
of calculation), w(ttran) = 0.15. This allows us to plot
the transition moment ttran(g2) as a function of g2, see
Figure 2.
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FIG. 2: Transition (preheating) time as a function of g2.

We see that the transition time varies between 100/m
and 150/m. This non-monotonic behavior of the dura-
tion of preheating is explained in the theory of broad
paremetric resonance [6] (see Sections 6 and 9 there).

The g2 dependence of the EOS is the critical issue
for the theory of modulated cosmological perturbations,
which we will discuss in Section IV.
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cube with a comoving edge size L = 10/m, which corre-
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require more IR and/or more UV to simulate accurately.

To probe later times and wider ranges of the couplings
it will be necessary to extend the lattice simulations.
This can be done with a parallelized version of the sim-
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lations with other methods, like the equations for a large
number of weakly coupled oscillators [22]. We intend to
pursue both of these approaches in subequent work.
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simulations.
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plings is shown in Figure 1. Each point plotted on this
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ii) Second, the dependence of w(t) on the coupling g2
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This is to say that the time during which preheating
comes to an end is very weakly (logarithmically) depen-
dent on the coupling. As seen from Figure 1 the curves
w(t) begin to shift to the left towards an earlier end of
preheating, as we vary g2 by 5%. However, at some point
the curves stop moving to the left and instead begin to
return toward the right. As we change g2 by about 25%,
the cycle repeats. As we vary g2, the function w not
only shifts, but it also varies its detailed shape. Still,
to characterize these variations, we pick up the moment
where w is equal to the value 0.15 (just for convenience
of calculation), w(ttran) = 0.15. This allows us to plot
the transition moment ttran(g2) as a function of g2, see
Figure 2.
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We see that the transition time varies between 100/m
and 150/m. This non-monotonic behavior of the dura-
tion of preheating is explained in the theory of broad
paremetric resonance [6] (see Sections 6 and 9 there).

The g2 dependence of the EOS is the critical issue
for the theory of modulated cosmological perturbations,
which we will discuss in Section IV.
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ameff .

the “bare” term m dominates up to mt ∼ 100 , while the
variance of χ provides the dominant contribution at later
times. Eq. (12) provides a useful expression for the vari-
ance; during the turbulence stage, the occupation num-
bers vary only adiabatically, so one may expect that the
growth of a meff results in a decrease of the variance, and
vice-versa. This relation is visible in the figures shown.
The “late time” decrease of a mχ,eff is accompanied by
an increase of 〈χ2〉. This in turns cause an increase of
a mφ,eff , and, consequently, a decrease of 〈φ2〉.

IV. COSMOLOGICAL IMPLEMENTATIONS OF
THE RESULTS

A. Complete Decay of the Inflaton

In the simple model discussed so far, with the inter-
action term φ2 χ2 , the decay of the inflaton φ is not
complete. Indeed, such a term mediates scatterings be-
tween inflaton quanta, rather than single particle decay.

Once φ is diluted by the expansion of the universe, the
scatterings become inefficient, and the number of infla-
ton quanta remain practically constant. This poses a
problem because in order to reach the stage of radiation
domination we need to have complete decay of the infla-
ton.

The simplest way to have a complete decay is to con-
sider three legs interactions. For instance, we can re-
place (3) by

Lint = −
g2

2
(φ + σ)2 χ2 (17)

where σ is a mass dimension parameter, which breaks
the φ ↔ −φ symmetry. For σ & φ , the trilinear term
produced by this interaction is irrelevant and the infla-
ton decay occurs as described above. However, when φ
is decreased by the expansion of the universe, the trilin-
ear interaction becomes dominant, leading to a complete
inflaton decay.

We can avoid discussing the introduction of the scale
σ by considering a Yukawa interaction of the inflaton
with some fermions ψ . By itself, this interaction has
interesting consequences for preheating, as discussed e.g.
in [23]. When both fermionic and bosonic interactions are
present, preheating into bosons is typically much more
efficient, since the one into fermions is reduced by Pauli
blocking. However, once the interactions become per-
turbative, the trilinear φ → ψ ψ decay will eventually
dominate over the φφ → χχ scattering.

Three-legs interactions arise very naturally in SUSY
theories. Indeed, consider the simple superpotential

W =
m√
8
φ2 + g2φχ2 . (18)

The corresponding scalar field potential contains three-
legs as well as four-legs plus self-interaction terms

V =
m2

2
φ2 +

√
2g2mφχ2 + 4g2φ2χ2 + g4χ4 (19)

(neglecting the imaginary parts of the fields). The four-
legs interaction dominates over the three-legs one as long
as φ >∼ σ = 2g2m. For reasonable values of σ, this hap-
pens during the first stages of preheating. Eventually, the
amplitude of φ decreases due to the expansion of the uni-
verse, and the trinlinear interaction dominates, resulting
in a complete decay of the massive inflaton.

Hence, considering a supersymmetric theory automat-
ically introduces trilinear vertices among the scalars. It
also allows for stronger couplings between the inflaton
and other fields, without spoiling the flatness of the in-
flaton potential, as we have discussed in Sec. II.

B. Relation between efoldings N and wavelength of
perturbations

The precise history of the expansion of the universe
a (t) is important for connecting the physical wavelength
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5

The quantum field χ̂ is decomposed into creation and annihilation operators with the eigenmodes χk(t) eik!x, where
k is the co-moving momentum. After the usual rescaling χk → a3/2 χk, where a(t) is the scale factor of the (spatially
flat) FRW universe, the temporal part of the χ-modes obeys the equation

χ̈k + ω2
k χk = 0 , (6)

where

ω2
k =

k2

a2
+ σ φ(t) + ∆ , (7)

∆ = −3ȧ2/4a2 − 3ä/2a, and a dot denotes a derivative with respect to the proper time t. The choice of the positive
frequency asymptotic solution in the past fixes the initial conditions while the condition χkχ̇∗

k − χ∗
kχ̇k = i fixes the

normalization for the solution of equation (6). In this section we consider solutions of this equation for harmonically
oscillating φ(t).

Let us first neglect the expansion of the universe, a(t) = 1. The background solution for the inflaton is then given
by φ(t) = Φ sin(mt) with a constant amplitude Φ. In this case, Eq.(6) reduces to the canonical Mathieu equation

χ′′
k + (Ak − 2q cos 2z)χk = 0 (8)

where mt = 2z− π
2 , Ak = 4k2

m2 and q = 2σΦ
m2 , and a prime denotes the derivative with respect to z. Right after inflation

we have Φ0 ∼ 0.1 MP , while m ∼ 1013 GeV in order to match with the observed CMB anisotropies. The q-parameter
is then very large, for instance q0 ∼

√
λ 105 >> 1 for λ ∼ σ2/m2.

The stability/intsability chart (A, q) of the Mathieu equation is divided into bands. We are interested in unstable
solutions, which correspond to the amplification of the vacuum fluctuations χk, in the regime of large q. Let us inspect
the effective frequency ω2

k. Modes with momenta Ak ≥ 2q have positive ω2
k. We can view Eq.(6) as the Schrodinger

equation with the periodic potential, where for Ak ≥ 2q the waves propagate above the potential barrier and are
periodically scattered by its peaks. They are amplified at the instances when ω2

k is minimal, i.e. in the vicinity of
z = lπ which corresponds to φ = −Φ in our case, and remain adiabatic outside of those instances. The whole process
can be considered as a series of scatterings in a parabolic potential, which approximates ω2

k around its zeros. The net
effect corresponds to broad parametric resonance, as described in [3].

However, for 0 < Ak < 2q the frequency squared of the modes with k2 < σ Φ becomes negative during some
intervals of time within each period of the background oscillations. These are the modes we consider in the rest of
this section because they give the dominant contribution to the number of produced particles. For those, we still can
use the method of successive scatterings, but each individual scattering cannot be approximated as scattering from a
parabolic potential. This is where we have to modify the theory.

Suppose the inflaton oscillations begin at some initial time t = t0 where ω2
k(t0) > 0 (take φ(t0) = Φ). Consider the

period during the (j + 1)th oscillation of the inflaton, from t = tj to t = tj+1 where tj = t0 + 2π j/m. The frequency
squared of the modes with k2 < σ Φ is negative during a k-dependent interval

Ω2
k(t) = −ω2

k(t) > 0 for t−kj < t < t+kj (9)

between the “turning points” t−kj and t+kj where ω2
k = 0. Now we can view Eq.(6) with 0 < Ak < 2q as the Schrodinger

equation with a periodic potential, where the wave periodically propagates above and below the potential barrier.
Except in the vicinity of the turning points, we have |ω̇k| << |ωk|2 and |ω̈k| << |ωk|3 (including imaginary values

for ωk) for q >> 1, so we may use the WKB approximation to solve for (6). For t < t−kj (above the barrier), we have
a superposition of positive- and negative-frequency waves

χk(t) & χj
k(t) =

αj
k

√

2ωk(t)
exp

(

−i

∫ t

t0

ωk(t′)dt′
)

+
βj

k
√

2ωk(t)
exp

(

i

∫ t

t0

ωk(t′)dt′
)

(10)

where the integral is taken over the intervals between t0 and t where w2
k > 0, and αj

k and βj
k are constant coefficients

(in the adiabatic approximation) during this time interval, determined as we describe below. These correspond to
the Bogoliubov coefficients (normalized as |αj

k|2 − |βj
k|2 = 1) and the initial vacuum for t → t0 is defined by the

positive-frequency mode, α0
k = 1, β0

k = 0. The adiabatic invariant

nj
k = |βj

k|
2 (11)

corresponds to the occupation number of the χ-particles after j inflaton oscillations and will be the major object of
interest.
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For t−kj < t < t+kj (below the barrier), the WKB approximation gives a superposition of exponentially increasing
and decreasing solutions

χk(t) !
aj

k
√

2Ωk(t)
exp

(

−
∫ t

t−kj

Ωk(t′)dt′
)

+
bj
k

√

2Ωk(t)
exp

(

∫ t

t−kj

Ωk(t′)dt′
)

(12)

where aj
k and bj

k are constant coefficients (normalized as aj
k bj ∗

k − aj ∗
k bj

k = i). Finally, for t > t+kj , we have χk(t) !
χj+1

k (t) as given by (10) in the WKB regime with the shift j → j + 1

The solution (12) with non-vanishing bj
k corresponds to an exponentially fast prodution of particles. The WKB

approximation in this tachyonic (below the barrier) stage is accurate for Ak < 2q−2
√

q. The duration of the tachyonic
stage decreases with increasing k, that is with growing Ak . For 2q − 2

√
q < Ak < 2q there is a short tachyonic stage,

during which however the WKB approximation does not apply. As Ak increases towards 2q, the χ-modes spend less
and less time in the tachyonic regime, which becomes less and less efficient. For Ak > 2q − 2

√
q, particle production

occurs in a small interval around φ = −Φ, providing a smooth limit with the case of broad parametric resonance for
Ak ≥ 2q.

To evaluate the growth of nk during one oscillation of the inflaton, we have to match between the successive
approximate solutions (10) and (12) around the turning points, where the WKB approximation is inapplicable. This
may be done by formally extending the domain of definition of χk to the complex plane, see Appendix A. Except
for the normalization conditions, the procedure is similar to the calculation, in quantum mechanics, of the (spatial)
evolution of a wave function in the quasi-classical regime [20]. We then find the “transfer matrix” between the
Bogoliubov coefficients after and before the (j + 1)th oscillation of the inflaton3

(

αj+1
k

βj+1
k

)

= eXj
k

(

1 i e2iθj
k

−i e−2iθj
k 1

) (

αj
k

βj
k

)

(13)

where

Xj
k =

∫ t+kj

t−kj

Ωk(t′) dt′ (14)

and θj
k is the total phase accumulated from t0 to t−kj during the intervals where ω2

k > 0, θj
k =

∫ t−kj

t0 dt ωk(t).

When the expansion of the universe is neglected, Φ, t±k and Xk do not depend on j. We have furthermore in this

case θj
k = θ0

k + j Θk where

Θk =

∫ t−k + 2π
m

t+k

ωk(t′) dt′ (15)

is the phase accumulated during one inflaton oscillation when ω2
k > 0. It is then easy to apply (13) (j + 1) times

recursively. With the initial conditions α0
k = 1 and β0

k = 0, one finds the occupation number of the χ-particles in the
k-mode (with k2 < σ Φ) after j oscillations of the inflaton to be

nj
k = |βj

k|
2 = exp(2jXk) (2 cosΘk)2(j−1) . (16)

This simple formula is the main analytic result of our paper. exp (2 Xk) gives the occupation number after the first
oscillation. For the trilinear interaction (7), one finds from (14) and (15), in terms of the variables in the Mathieu
equation (8)

Xk =

∫ π+z̃k

π−z̃k

Ωk(z) dz = 2
√

2q − Ak E

(

z̃k ;
4q

2q − Ak

)

(17)

3 This may be expressed as usual in terms of reflection and transmission coefficients satisfying |Rk|2 + |Dk|2 = 1, up to exponentially

small terms, ∝ exp
(

−X
j
k

)

, which are beyond the accuracy of the WKB approximation.
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and

Θk =

∫ π−z̃k

z̃k

ωk(z) dz = 2
√

2q + Ak E

(

π

2
− z̃k ;

4q

2q + Ak

)

(18)

where E(θ ; m) denotes the incomplete elliptic integral of the second kind with amplitude θ < π
2 and parameter m

[15]. Here we have defined

z̃k =
1

2
arccos

(

Ak

2q

)

∈ [0,
π

4
] (19)

so that the turning points are given by z±k = π ± z̃k.
The functional dependence of Xk, which controls the efficiency of particle production, is

Xk = 2
√

2q f

(

Ak

2q

)

. (20)

In the interval we are interested (Ak < 2q), we found a good approximation f (y) # 0.6 (1 − y) (verified numerically).
Therefore, we can use the following accurate approximation

Xk # −
x
√

q
Ak + 2x

√
q (21)

with x =
√

π
2
√

2

Γ(3/4)
Γ(5/4) # 0.85.

The analytic formula (16) derived with the WKB method, gives a pretty good approximation to the actual field
dynamics. To show this, we plot in Figure 2 the occupation number nj

k in (16) as a function of Ak, after j = 1 and
j = 4 oscillations, for the value of the parameter q = 20. Numerical calculations (dots) coincide with the results of
the analytical curve.
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FIG. 2: log nj
k derived from (16) as a function of Ak, after j = 1 (left) and j = 4 (right) oscillations of the inflaton, for q = 20.

The dots correspond to numerical solutions.

Quite interestingly, after several inflaton oscillations (j > 1), there are modes with negative frequency squared
for which the tachyonic growth does not occur (see right panel of Figure 2). These form stability bands, which
shrink to lines for q >> 1, given by cosΘk = 0 (see (16)). In some sense, the situation is reversed with respect
to the conventional parametric resonance for q % 1, where only some values of k, forming the instability bands,
“resonate” with the frequency of the inflaton and undergo an exponential growth. Here, all the modes are amplified
by the tachyonic instability except the ones belonging to the very narrow stability bands. These are described in more
details in Appendix B. Beyond the WKB approximation, each stability line is split after each inflaton oscillation. After
several oscillations, the net effect is the formation of stability bands of finite width δAk ∼ √

q e−x
√

q. As q decreases,
these bands become wider, while the distance between them decreases as ∆Ak ∼ √

q (see appendix B) ; at the same
time the efficiency of particle production decreases as Xk ∼ √

q from (21)). When q < 1, the width of the stability
and instability bands are comparable, and the tachyonic effect becomes indistinguishable from (narrow) parametric
resonance (as is clear from the stability/instability chart of the Mathieu equation in this region of parameters).
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resonance. The theory of this effect (impact of three-legs vertices on parametric resonance) was given in Section IV.
Meanwhile in model C, where preheating occurs through tachyonic resonance only, this stage takes only one inflaton
oscillation, showing the efficiency of the effect.
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After preheating ends there is a brief violent stage of rescattering, followed by a much longer stage of weak turbulence
during which the spectra cascade towards UV and IR modes, gradually approaching kinetic equilibrium. We can see
in Figures 4 and 5 that this cascade occurs faster in the presence of a trilinear term, i.e. in models B and C compared
to model A. In Figure 6 we plot k2ωknk for δφ quanta, which corresponds to the contribution of these modes to the
total energy density of the system at the end of the simulations. We see that in the presence of the trilinear interaction
the spectrum is spread much more strongly towards the UV. This means that more δφ quanta are relativistic in this
case. This will be important for the following discussion.

Now we turn to the evolution of the equation of state (EOS), see Figure 7. In model A, where the trilinear
interaction is absent, the equation of state rises to roughly 1/4 and then starts falling back towards zero. In this
model the EOS will never reach w = 1/3 because the massive inflaton particles cannot decay completely [10]. In the
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time of inflaton particle decay is given by τ ∼ 1/Γ ∼ 8πm/σ2 ∼ 108/m for q3 = 100. This stage of the evolution
cannot be captured by simulations of the classical fields dynamics, however.

VI. PREHEATING WITH NON-RENORMALIZABLE INTERACTIONS

In this section we study preheating due to the presence of non-renormalizable terms in the theory

∆L = −λn
φnχ2

Mn−2
. (39)

These terms may occur alongside the usual three- and four-legs vertices, or in cases where the only interactions are
the non-renomalizable ones. We show that, quite surprisingly, the non-renormalizable terms (39) alone lead to very
efficient preheating. We also show that, even in the presence of renormalizable interactions, non-renormalizable ones
tend to dominate the early stage of preheating.

If M is close to the Planck mass, the amplitude of the inflaton satisfies Φ/M < 1 during preheating and the theory
is in a controllable regime. If all the couplings λn are of order one, the dominant interaction in (39) is then the one
with n = 3. Here we will consider the more general case where n is odd. For n even, there is no tachyonic amplification
and preheating occurs due to parametric resonance.

Let us begin with the theory of χ particle creation from the oscillating inflaton due to the interaction (39) with n
odd, without expansion of the universe. The χk eigenmodes obey the equation

χ′′
k + (Ak − 2qn cosn 2z)χk = 0, (40)

where mt = 2z− π
2 , Ak = 4k2

m2 and qn = 2λnΦn

m2Mn−2 . For M ∼ MP , λn ∼ O(1) and m ∼ 1013 GeV, we have qn ∼ 1012/10n

at the beginning of preheating.
The method of solving this equation for qn # 1 will be based on a generalization of the method of Section III which

we developed for equation (8) for the regime of tachyonic resonance.
Repeating the analysis of section III and the Appendices, we find that the behavior of occupation numbers of χ

particles with time is given by the formula which generalizes (16)

n(n)
j (k) = exp(2jX(n)

k )
(

2 cosΘ(n)
k

)2(j−1)
. (41)

with

X(n)
k =

∫ π+z̃k,n

π−z̃k,n

√

2qn cosn 2z − Ak dz (42)

and

Θ(n)
k =

∫ π−z̃k,n

z̃k,n

√

Ak − 2qn cosn 2z dz, (43)

where z̃k,n = 1
2arccos

(

(

Ak

2qn

)1/n
)

. The condition cosΘ(n)
k = 0 defines the median locations of the stability bands.
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FIG. 6: Spectra k2 ωk nk/m3 as a function of k/m for δφ quanta at m t = 1000. The spectrum peaked in the IR is for model
A while the spectra for model B (above) and model C (lower) are spread out much further in the UV.

presence of a trilinear term, by contrast, the equation of state jumps to a plateau value and does not decrease. In
our simulations of classical fields this value is slightly below 1/3. This is the most important reason to introduce a
three-legs interactions. The trilinear term dramatically affects the evolution of the equation of state. It is expected
that much later in the evolution, when quantum effects become important, the decay of the massive inflaton will
result in an asymptotic radiation EOS.
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FIG. 7: Equation of state w = ptot/ρtot of the system, as a function of mt, for models A (left), B (middle), and C (right).

To understand the behavior of the EOS, we investigate how the fraction of relativistic particles is evolving in the
system. Let us consider the fraction of quanta whose physical momenta k/a are larger than their effective masses

nrel

n
=

∫

k>a meff
d3knk

∫

d3knk
. (36)

The effective masses are given by

m2
φ,eff(t) = m2 + g2 〈χ2〉 (37)

m2
χ,eff(t) = g2 φ̄2 + σ φ̄ + g2 〈δφ2〉 + 3λ 〈χ2〉 (38)

for φ and χ respectively. We calculate and plot in Figure 8 the fraction of relativistic particles.
After the preheating stage, the effective mass of the χ-quanta is dominated by the term 3λ 〈χ2〉, which is diluted with

the expansion of the universe as, approximatively, mχ,eff ∼
√

〈χ2〉 ∼ a−1(t). This is the same rate as the redshift
of physical momenta, so that the number of relativistic χ-quanta increases due to the flow of comoving momenta
towards UV modes. On the other hand, the effective mass of the δφ-quanta is dominated by the constant bare mass
m. Therefore, these quanta become less relativistic as their physical momenta are redshifted with the expansion,
except if the flow of comoving momenta towards UV modes is as fast as a(t). We see from Figure 8 that this only
occurs in the presence of a trilinear term. In short, model A moves towards matter domination because the φ particles
cannot decay completely and become increasingly non-relativistic. In the presence of a trilinear interaction, however,
the φ particles become increasingly relativistic. The inflaton field should decay completely on a much longer time
scale through the quantum process φ → χχ. When the occupation numbers have been diluted by the expansion of
the universe, nk/a3 << 1, this process should dominate the dynamics of model B and C. In this regime, the typical
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particles with time is given by the formula which generalizes (16)

n(n)
j (k) = exp(2jX(n)

k )
(

2 cosΘ(n)
k

)2(j−1)
. (41)

with

X(n)
k =

∫ π+z̃k,n

π−z̃k,n

√

2qn cosn 2z − Ak dz (42)

and

Θ(n)
k =

∫ π−z̃k,n

z̃k,n

√

Ak − 2qn cosn 2z dz, (43)

where z̃k,n = 1
2arccos

(

(

Ak

2qn

)1/n
)

. The condition cosΘ(n)
k = 0 defines the median locations of the stability bands.
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FIG. 6: Spectra k2 ωk nk/m3 as a function of k/m for δφ quanta at m t = 1000. The spectrum peaked in the IR is for model
A while the spectra for model B (above) and model C (lower) are spread out much further in the UV.

presence of a trilinear term, by contrast, the equation of state jumps to a plateau value and does not decrease. In
our simulations of classical fields this value is slightly below 1/3. This is the most important reason to introduce a
three-legs interactions. The trilinear term dramatically affects the evolution of the equation of state. It is expected
that much later in the evolution, when quantum effects become important, the decay of the massive inflaton will
result in an asymptotic radiation EOS.
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FIG. 7: Equation of state w = ptot/ρtot of the system, as a function of mt, for models A (left), B (middle), and C (right).

To understand the behavior of the EOS, we investigate how the fraction of relativistic particles is evolving in the
system. Let us consider the fraction of quanta whose physical momenta k/a are larger than their effective masses

nrel

n
=

∫

k>a meff
d3knk

∫

d3knk
. (36)

The effective masses are given by

m2
φ,eff(t) = m2 + g2 〈χ2〉 (37)

m2
χ,eff(t) = g2 φ̄2 + σ φ̄ + g2 〈δφ2〉 + 3λ 〈χ2〉 (38)

for φ and χ respectively. We calculate and plot in Figure 8 the fraction of relativistic particles.
After the preheating stage, the effective mass of the χ-quanta is dominated by the term 3λ 〈χ2〉, which is diluted with

the expansion of the universe as, approximatively, mχ,eff ∼
√

〈χ2〉 ∼ a−1(t). This is the same rate as the redshift
of physical momenta, so that the number of relativistic χ-quanta increases due to the flow of comoving momenta
towards UV modes. On the other hand, the effective mass of the δφ-quanta is dominated by the constant bare mass
m. Therefore, these quanta become less relativistic as their physical momenta are redshifted with the expansion,
except if the flow of comoving momenta towards UV modes is as fast as a(t). We see from Figure 8 that this only
occurs in the presence of a trilinear term. In short, model A moves towards matter domination because the φ particles
cannot decay completely and become increasingly non-relativistic. In the presence of a trilinear interaction, however,
the φ particles become increasingly relativistic. The inflaton field should decay completely on a much longer time
scale through the quantum process φ → χχ. When the occupation numbers have been diluted by the expansion of
the universe, nk/a3 << 1, this process should dominate the dynamics of model B and C. In this regime, the typical

Equation

of state

g2

2
φ2 χ2

g2

2
φ2 χ2 + σ φ χ2

g2 ∼ 10−7 σ ∼ 10−2 mφ

Thermalization occurs on a much longer timescale;

easier for

conformal cases, λ φ4 + g2φ2χ2

(Kolmogorov) Turbulence; distributions

evolve self–similarly

q = 3.5 p , p =
1

2m − 1
, m = 3

Equation

of state

g2

2
φ2 χ2

g2

2
φ2 χ2 + σ φ χ2

g2 ∼ 10−7 σ ∼ 10−2 mφ

Thermalization occurs on a much longer timescale;

easier for

conformal cases, λ φ4 + g2φ2χ2

(Kolmogorov) Turbulence; distributions

evolve self–similarly

q = 3.5 p , p =
1

2m − 1
, m = 3

Equation

of state

g2

2
φ2 χ2

g2

2
φ2 χ2 + σ φ χ2

g2 ∼ 10−7 σ ∼ 10−2 mφ

Thermalization occurs on a much longer timescale;

easier for

conformal cases, λ φ4 + g2φ2χ2

(Kolmogorov) Turbulence; distributions

evolve self–similarly

q = 3.5 p , p =
1

2m − 1
, m = 3



nonlinear ! perturbative

nonperturbative

Comparison quantum/classical dynamics

Practically no quantum corrections at the end of preheating

"#$%#&'()*+,-*./'(01,234+(567

Accurate nonperturbative description by 2PI 1/N to NLO

Classical-statistical simulations: Khlebnikov, Tkachev 589:(Prokopec,Roos 58;:(

Tkachev, Khlebnikov'(<*/2=>'(?3>4#(@87:(A

p

• Speeds up thermalization (χ + χ → φ, . . .)

• New preheating, m2
eff ,χ < 0 at periodically recurring times

Quartic interaction contrasts this, but

Preheating mostly at φ " 0, where cubic term important

Expansion reduces the amplitude of φ

Dufaux, Felder, Kofman, MP, Podolsky ’06

Tachyonic resonance

ω2
k = k2 + σ φ

WKB approx.

Parametric resonance: instability bands where φ (t) “resonate” with ω

Tachyonic resonance:

stability bands where

resonance counterbalances

the tachyonic instability

(Berger’s talk @ KITP)



Comparison analytical/simulation results

Late-time behavior well characterized by non-thermal fixed points!

UV: ! = 3/2 coincides with perturbative (Boltzmann) analysis exponent

a) local four-leg interaction ! ! = 0, 1, 4/3, 5/3

b) local three-leg interaction ! ! = 1, 3/2
Micha, Tkachev !"#

$%&'%()*+,-./,01)*23.456-*!"7

!"#"$

!"#"%&'

• Speeds up thermalization (χ + χ → φ, . . .)

• New preheating, m2
eff ,χ < 0 at periodically recurring times

Quartic interaction contrasts this, but

Preheating mostly at φ " 0, where cubic term important

Expansion reduces the amplitude of φ

Dufaux, Felder, Kofman, MP, Podolsky ’06

Tachyonic resonance

ω2
k = k2 + σ φ

WKB approx.

Parametric resonance: instability bands where φ (t) “resonate” with ω

Tachyonic resonance:

stability bands where

resonance counterbalances

the tachyonic instability

(Berger’s talk @ KITP)



resonance counterbalances

the tachyonic instability

(Berger’s talk @ KITP)

• Nonthermal fix points; “stuck” there if small couplings

• Themalization in more realistic situations (gauge couplings,
fermions). Reheating temperature ?

resonance counterbalances

the tachyonic instability

(Berger’s talk @ KITP)

• Nonthermal fix points; “stuck” there if small couplings

• Thermalization in real life (gauge couplings, fermions).

What timescale ? Reheating temperature ?

resonance counterbalances

the tachyonic instability

(Berger’s talk @ KITP)

• Nonthermal fix points; “stuck” there if small couplings

• Thermalization in real life (gauge couplings, fermions).

What timescale ? Reheating temperature ?

resonance counterbalances

the tachyonic instability

(Berger’s talk @ KITP)

• Nonthermal fix points; “stuck” there if small couplings

• Thermalization in real life (gauge couplings, fermions).

What timescale ? Reheating temperature ?

• Several issues, for which Trh not essential

resonance counterbalances

the tachyonic instability

(Berger’s talk @ KITP)

• Nonthermal fix points; “stuck” there if small couplings

• Thermalization in real life (gauge couplings, fermions).

What timescale ? Reheating temperature ?

• Several issues, for which Trh not essential

After all, huge energy density stored in these distributions, while

! energy density at the time of thermal equilibrium

resonance counterbalances

the tachyonic instability

(Berger’s talk @ KITP)

• Nonthermal fix points; “stuck” there if small couplings

• Thermalization in real life (gauge couplings, fermions).

What timescale ? Reheating temperature ?

• Several issues, for which Trh not essential

After all, huge energy density stored in these distributions, while

! energy density at the time of thermal equilibrium

(dramatic shift from more traditional perturbative reheating)



Production of super–heavy particlesProduction of super–heavy particles

• Many models of baryogenesis require heavy masses;

thermal production can be in conflict with bounds on

Trh from gravitino problem

Production of super–heavy particles

• Many models of baryogenesis require heavy masses;

thermal production can be in conflict with bounds on

Trh from gravitino problem

E.g. Thermal leptogenesis

from r.h. neutrinos

Giudice et al. ’04

Production of super–heavy particles

• Many models of baryogenesis require heavy masses;

thermal production can be in conflict with bounds on

Trh from gravitino problem

E.g. Thermal leptogenesis

from r.h. neutrinos

Giudice et al. ’04

Production of super–heavy particles

• Many models of baryogenesis require heavy masses;

thermal production can be in conflict with bounds on

Trh from gravitino problem

E.g. Thermal leptogenesis

from r.h. neutrinos

Giudice et al. ’04

(main reason, δCP ∝ mN1
)

Production of super–heavy particles

• Many models of baryogenesis require heavy masses;

thermal production can be in conflict with bounds on

Trh from gravitino problem

E.g. Thermal leptogenesis

from r.h. neutrinos

Giudice et al. ’04

(main reason, δCP ∝ mN1
)

• GUT Baryogenesis MGUT >∼ 1014 GeV
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M
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Figure 10: Analytical lower bounds on M1 (circles) and Ti (dotted line) for m1 = 0,

ηCMB
B = 6 × 10−10 and matm = 0.05 eV. The analytical results are compared with the

numerical ones (solid lines). The vertical dashed lines indicate the range (msol,matm).

The gray triangle at large M1 and large m̃1 is excluded by theoretical consistency (cf. ap-

pendix A).

Fig. 10 shows the analytical results for Mmin
1 (m̃1), based on Eq. (107) for thermal initial

abundance (thin lines) and the sum of Eqs. (109) and (110) for zero initial abundance

(thick lines). For comparison also the numerical results (solid lines) are shown. The

absolute minimum for M1 is obtained for thermal initial abundance in the limit m̃1 → 0,

for which κf = 1. The corresponding lower bound on M1 can be read off from Eq. (120)

and at 3 σ one finds

M1 ! 4 × 108 GeV . (121)

This result is in agreement with [10] and also with the recent calculation [12]. Note that the

lower bound on M1 becomes much more stringent in the case of only two heavy Majorana

neutrinos [28]. The bound for thermal initial abundance is model independent. However,

it relies on some unspecified mechanism which thermalizes the heavy neutrinos N1 before

the temperature drops considerably below M1. Further, the case m̃1 # 10−3 eV is rather

artificial within neutrino mass models, and in this regime a pre-existing asymmetry would

not be washed out [2].

31

Theoretical input needed (model → Trh)

• Several questions asked / answered even

without this knowledge

(limit on g in concrete models)

Buchmuller, Di Bari, Plumacher ’04
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Most of the production in the first

Hubble time (H−1 ∼ Mp/T2)

n3/2 ≈
10−2 T6
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p

×
Mp

T2
⇒

n3/2

s
≈ 10−2 T

Mp

⇒ T <∼ 109 GeV

• Applications
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III. GW ENERGY DENSITY SPECTRUM

In this section, we derive the spectrum of energy density in gravitational waves emitted by the random media of
the scalar fields. This involves taking the spatial average of bilinear combinations of the (transverse-traceless) metric
perturbation. This is what we will use in our numerical simulations. We develop this approach in sub-section III A.
In sub-section III B we relate our formula to the Weinberg formula for dEgw

dΩ , which is often used in the literature.
However, the simulations rely on a particular realization of the initial quantum fluctuations for the scalar fields.
Analytical calculations can be advanced further by taking average over the ensemble of different realizations, and we
calculate the gravity waves spectrum in this way in sub-section III C. Finally, in sub-section III D, we present the
rescalings needed to convert the spectrum into the present-day physical variables.

A. GW Energy Density

The energy density carried by a gravity wave cannot be localized in regions smaller than its wavelength, but it can
be defined as an average over a volume V of several wavelengths’ size (see e.g. [23])

ρgw =
1

32πG
〈ḣij(t,x) ḣij(t,x)〉V (21)

where a dot denotes a derivative with respect to cosmic time t =
∫

a dτ . In terms of conformal time and h̄ij in (6),
we have

ḣij ḣij =
1

a4

(

h̄′
ij h̄′

ij + 2aH h̄ij h̄′
ij + a2H2 h̄ij h̄ij

)

(22)

For sub-Hubble wavelengths, k/a # H , the second and third terms are negligible with respect to the first one. We
therefore have

ρgw =
1

32πGa4
〈h̄′

ij(τ,x) h̄′
ij(τ,x)〉V =

1

32πGa4

1

V

∫

d3k h̄′
ij(τ,k) h̄′∗

ij(τ,k) (23)

where ∗ denotes the complex conjugate. In the second equality, we expanded each h̄ij(τ,x) into Fourier components
h̄ij(τ,k), and then calculated the remaining spatial average as

1

V

∫

V #λ3

d3x e−i(k+k′)x =
(2π)3

V
δ(3)(k + k′) (24)

where the (comoving) volume V has large dimensions compared to the (comoving) wavelengths λ. The volume factor
appears for dimensional reasons due to our use of a continuous Fourier transform (5), as opposed to a Fourier series.
In the lattice simulations, V will correspond to the volume of the box in configuration space. The final results are
independent of V .

For hij(τ,k) in Eq. (23), we use (14) corresponding to the free waves propagating up to now after the emission
process is completed. Suppose that today we are not interested in the resolution of the oscillation of h̄ij(τ,k) with
time, so we average over a complete period of oscillation T = 2π

k

〈h̄′
ij(τ,k) h̄′∗

ij(τ,k)〉T =
k2

2

∑

i,j

(

|Aij |2 + |Bij |2
)

=

(16πG)2

2

∑

i,j

{

∣

∣

∣

∣

∫ τf

τi

dτ ′ cos [k (τf − τ ′)] a(τ ′)T TT
ij (τ ′,k)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫ τf

τi

dτ ′ sin [k (τf − τ ′)] a(τ ′)T TT
ij (τ ′,k)

∣

∣

∣

∣

2
}

(25)

where
∑

i,j |Xij |2 = Xij X∗
ij , and we used (15) in the last equality. Expanding the cosine and sine above in factors of

cos(kτf ) and sin(kτf ), these factors go out of the integrals and eventually give cos2(kτf ) + sin2(kτf ) = 1. Plugging
the result into (23), we get

ρgw =
4πG

a4

1

V

∫

d3k
∑

i,j

{

∣

∣

∣

∣

∫ τf

τi

dτ ′ cos (k τ ′) a(τ ′)T TT
ij (τ ′,k)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫ τf

τi

dτ ′ sin (k τ ′) a(τ ′)T TT
ij (τ ′,k)

∣

∣

∣

∣

2
}

(26)

In momentum space

h̄ij = a
∫ d3x

(2π)3/2
hij eikx

h̄ij +

(

k2 −
a′′

a

)

h̄ij = 16π G a T TT
ij

Oij, lm

(

k̂
)

∫

d3p

(2π)3/2
pl pm φa (p)φa (k − p)

h̄ij =
16π G

k

∫

dη sin
[

k
(

η − η′
)]

a
(

η′
)

TTT
ij

(

η′, k
)

Evaluated through realizations on the lattice
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II. EMISSION OF GRAVITY WAVES BY INHOMOGENEOUS SCALAR FIELD SOURCES

In this section we present the basic equations for classical gravitational waves emitted by a background made of
inhomogeneous scalar fields. We also spell out a rather obvious but very useful theorem stating that the superposition
of scalar fields waves with a “particle-like” dispersion relation does not emit gravity waves.

A. Equations for Gravitational Waves with Sources in an Expanding Universe

We consider several inhomogeneous scalar fields, denoted collectively by {φa, a = 1, 2, ...}, with energy-momentum
tensor

Tµν = ∂µφa ∂νφa − gµν

(

1

2
gρσ ∂ρφa ∂σφa + V

)

(1)

where repeated indices a are summed. During preheating, the inflaton decays inhomogeneously and some of the fields
coupling to it are significantly amplified. The fields are rather homogeneous at large scales (at the Hubble radius and
beyond), but highly inhomogeneous inside the Hubble radius. These field inhomogeneities at small scales cannot be
treated as small perturbations1. They participate in the evolution of the background scale factor through the average
of the energy momentum tensor 〈Tµν〉 in the Einstein equations. Here we consider the linear response of the metric
perturbation δgµν to the inhomogeneous part of Tµν . We will work at linear order in δgµν because its coupling to
Tµν is suppressed by the Planck mass MPl, and the typical mass scales involved in the energy-momentum tensor are
much lower than MPl. Among the different components of the metric perturbation, gravitational waves are the only
physical degrees of freedom which propagate and carry energy out of the source, see e.g. [22].

In a (spatially flat) Robertson-Walker background, gravitational waves may be represented by the transverse and
traceless part of the spatial metric perturbation

ds2 = gµν dxµdxν = a2(τ)
[

−dτ2 + (δij + hij) dxidxj
]

(2)

with2 ∂ihij = hii = 0. The perturbation hij corresponds to two independent tensor degrees of freedom and has the
equation of motion

h′′
ij + 2

a′

a
h′

ij −∇2hij = 16πGa2 ΠTT
ij , (3)

where a prime denotes a derivative with respect to conformal time τ .
Free gravitational waves obey the equation (3) without the source term. They can be quantized, and one can study

the amplification of their vacuum quantum fluctuations in an expanding universe. An especially important case is
exponential expansion of the universe during inflation, when tensor mode quantum fluctuations lead to a stochastic
background of classical long-wavelength gravitational waves.

We will consider a different, complementary situation, when quantum effects are negligible, and classical gravita-
tional waves are generated by a non-zero source term in Eq. (3). The source term ΠTT

ij is the transverse-traceless part

(∂iΠTT
ij = ΠTT

ii = 0) of the anisotropic stress Πij

a2 Πij = Tij − 〈p〉 gij (4)

where 〈p〉 is the background homogeneous pressure. Formally, the second term in the RHS of Eq. (4) and the second
term in the (i, j) components of the RHS of Eq. (1) involve the metric perturbation hij , through gij = δij + hij . This
gives a contribution in 16πG

3 〈∂kφa∂kφa〉 h̄ij (where h̄ij is defined in (6)) in the RHS of Eq. (7) below. We shall not
include this term since it emerges only at second order in the gravitational coupling and is negligible at sub-Hubble
scales.

There are different ways to solve the wave equation (3). One can use Green functions in configuration space, but the
transverse-traceless projection then involves inconvenient non-local operators. Another method [11], for the harmonic

1 In fact, they correspond typically to density contrasts δρ/ρ ∼ tens
2 Here and in the following, Latin indices i, j, ... run over the 3 spatial coordinates, and repeated indices are summed. They are raised

and lowered with the Kronecker symbol δij , so we don’t distinguish between upper and lower indices.

h′′
ij + 2

a′

a
h′

ij −∇2hij = 16π G
(

Tij − 〈p〉 gij

)TT

(

A

B

)TT

• Free gravitational waves (no r.h.s.), can be quantized;

amplification of vacuum quantum fluctuations in expanding universe.

During inflation → stochastic background of classical grav. waves

Very long wavelengths; stretched during inflation

Free since φ (t) + δφ (t, x), with inhomogeneities small
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FIG. 1. Upper bounds on mXYX as a function of τX at
95% C.L. for the case of Bh = 10−3. The name of the
element which gives the constraint is written by each line.
We assume that two hadron jets are produced by single de-
cay of X with the energy Ejet = mX/2. Here we consider
mX = εX = 1 TeV. Note that YX = nX/s.

FIG. 2. Same as Fig. 1, except for Bh = 1.

∼ 10 keV, however, non-thermally produced 6Li is de-
structed by the thermal process 6Li(p, 4He)3He, as was
also pointed out in [19]. Thus the constraint from the
6Li is weakened for τX

>∼ 104 sec.
If the lifetime of X is short (i.e., τX

<∼ 102 sec), X
decays when the number density of the background elec-
tron (and positron) is still abundant and, in this case,
energetic nucleons and nuclei are likely to scatter off the
background electron and lose their energy without com-
mitting the hadro-dissociation processes. In this case,

Bh = 10−3 Bh = 1
m3/2 = 100 GeV 2 × 106 GeV 3 × 106 GeV
m3/2 = 300 GeV 3 × 106 GeV 3 × 106 GeV
m3/2 = 1 TeV 3 × 108 GeV 3 × 105 GeV
m3/2 = 3 TeV 2 × 108 GeV 7 × 105 GeV

TABLE I. Upper bounds on TR for several values of m3/2.

the production of D and 6Li is suppressed and the upper
bound on mXYX is not stringent.

Finally, we apply the above results to the primordial
abundance of gravitinos. In the inflationary universe,
gravitinos are produced by the scattering processes of
the thermal particles. The yield variable of the gravitino
is proportional to the reheating temperature TR after the
inflation, YX = 1.5×10−12×(TR/1010 GeV) [3]. In addi-
tion, assuming the (massless) gauge boson and gaugino
as the final state, lifetime of the gravitino is given by
τ3/2 # 4 × 108 sec × N−1

G (m3/2/100 GeV)−3, where NG

is the number of the generators of the gauge group, and
m3/2 is the gravitino mass. As examples, we consider
two typical cases. The one is the case where the grav-
itino dominantly decays into the photon and photino,
producing two hadron jets with Ejet = 1

3m3/2; in this
case, we take Bh = 10−3, NG = 1, and εX = 1

2m3/2. The
other is the case where the gravitino dominantly decay
into the gluon and gluino, producing one hadron jet with
Ejet = 1

2m3/2; in this case we take Bh = 1, NG = 8,
and εX = 1

2m3/2. For these cases, we read off the upper
bound on the reheating temperature for several values of
the gravitino mass. The results are shown in Table I. It
is seen that the constraint on TR is much more stringent
than that obtained for gravitino without hadronic decay.
Note added: While finalizing this letter, we found the
paper by K. Jedamzik [20] which have some overlap with
our analysis.
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Conclusions
• Reheating belongs to the standard paradigm of cosmology.
Yet, it is the most uncertain stage in the history of the universe,
MeV <∼ Trh <∼ 109 GeV

• Unsettled issues include generation of very massive particles,
M <∼ Treh, gravitational relics, connection Ninfl ↔ λ0, modulated
perturbations

• While basic formalism is known, major advance may require
improvement of numerical techniques, or development of scaling
solutions for more realistic cases

Gravitino thermal production

See also Shuhmaher, Brandenberger ’05, as a solution to moduli problem

Melchiorri, Mersini-Houghton, Odman, Trodden ’03
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Nonperturative overproduction at preheating ?

Gravitinos have 2 helicities, transverse (ψ3/2) and longitudinal (ψ1/2)

• ψ3/2 only gravitationally coupled. Negligible production at preheating

Maroto, Mazumdar ’99

• ψ1/2 fermionic partner of the SUSY% field(s) “super–higgs”

Overproduction found in chaotic inflation, W = λφ3 ↔ V = λφ4

Giudice, Tkachev, Riotto ’99; Kallosh, Kofman, Linde, Van Proeyen ’00

Inflaton SUSY% during and right after inflation ⇒ ψ1/2 ≡ “inflatino”

SUSY% by %= fields at %= times. Nature of ψ3/2 changes with time

Nilles, M.P., Sorbo ’01
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• Applications

Greene, Kofman ’98, ’00

Two–flavors quarks ↔ σ, "π

Pre–thermalization



• Small Trh ≡ late inflaton decay; energy “frozen”

in the coherent oscillations until diluted by expansion

• Rescattering → distributions far from thermal; but
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Rough estimates suggest overproduction for h >∼ 10−7

Theoretical input needed (model → Trh)

• Several questions asked / answered even

without this knowledge

(limit on g in concrete models)
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