Conformal dynamics of precursors to fracture

Felipe Barra, Mauricio Herrera and Itamar Procaccia

August 17, 2003

Introduction

Precursors to fracture and their dynamics (2D)

Surface tension effects

Conclusions

A fact: Solids break!

breaking) is huge compared to experiments. The Energy needed to break a perfect solid (bond

needed energy. Fractures concentrate stress at their tip lowering the

In general, fractures appears in free boundaries (borders or pores).

an without a fracture of length l. Lets compare the energy of a solid under tension with

- If $l < l_0 = \Gamma/C$ a perfect solid is energetically preferred
- To nucleate a crack of length l_0 a barrier $\Delta E* = \Gamma^2/C$ must be overcame.

Stress driven surface instability: an alternartive view

- Superface difusion as a mass transport mechanism
- Instability bations of long wave-length: Asaro-Tiller-Grinfeld Under stress a flat surface is unstable for pertur-
- Instability leads to the formation of grooves that seems to end in a cusp

It has been argued that the energy is always decresing in this process (H. Gao).

Gao). same way than a fracture and once the cusp is formed, fracture may proceed according to Griffith criterion (H. Moreover the groove tip concentrate the stress in the

Precursors to fracture

movement of the interface according to Mullins in the surface (and body) of a solid. This produces a In a large time scale, transport by diffusion can occur

$$J_s = \frac{\nu D}{kT} \frac{\partial \mu}{\partial s}$$

Mass conservation (continuity equation) implies

$$v_n(s) = -\tilde{D}\frac{\partial^2 \mu}{\partial s^2}$$

surface energy $\gamma ds
ightarrow \gamma \kappa$

 γ : dens. surface energy

 κ : mean curvature

S= deformation energy; $S=\frac{1}{2}\sum u_{ij}\sigma_{ij}$. stress σ_{ij} and at the surface (plane stress and no surface tension): The strain u_{ij} can be expressed in terms of the

$$S = \frac{1}{2E} [\text{tr}\sigma]^2$$

Finally we write

$$v_n = -\frac{\partial^2 [S - \gamma \kappa]}{\partial s^2} \ . \tag{2}$$

is equilibrated at a time scale corresponding to sound. The motion due to v_n is a slow motion. The stress field

is the quasi static limit. Therefore the elastic problem is considered static. This

Newton's law:

$$\partial_i \sigma_{ij} = \rho \ddot{u}_j = 0$$

determine the stress distribution on the body, but in 2D problems The problem is: given applied stresses on the boundary,

$$\sigma_{xx} = \partial_y^2 U$$
, $\sigma_{yy} = \partial_x^2 U$, $\sigma_{xy} = -\partial_{xy} U$,

Hook $\rightarrow U$ is biharmonic: $\Delta^2 U = 0$

2D problems: Complex variables

The Gral. Sol. of the biharmonic Eq. is

$$U(z,\bar{z}) = \Re \left[\bar{z}\varphi(z) + \int \psi(z) \right] ,$$

 $\varphi(z)$ and $\int \psi(z)$: analytic functions of z=x+iy determined later by boundary conditions.

B.C. at
$$\infty \to \begin{cases} \varphi(z) \to \frac{\sigma_0}{2}z \\ \psi(z) \to 0 \end{cases}$$
 as $z \to \infty$

On the boundary Γ : $\sigma_{nn}=0$ and $\sigma_{nt}=0$ implies

$$\varphi(z) + z\overline{\varphi'(z)} + \overline{\psi(z)} = K = 0 \quad \text{on} \quad \Gamma$$

is complex and is evolving! This equation determine arphi and ψ but The boundary

Conformal maps: Treating the boundaries

outside the unit circle the object. The function satisfies $\Phi'(\omega) \neq 0$ everywhere that map the exterior of the unit circle to the exterior of Consider an analytic function outside the unit circle

 $\Phi(\omega, t) = F_1(t) \ \omega + F_0(t) + \sum_{n=1}^{\infty} F_{-n}(t) \ \omega^{-n} \ .$

 $\tilde{\varphi}(\varepsilon)$

 $\varphi(z) = \tilde{\varphi}(\Phi^{-1}(z))$

The normal velocity $v_n(\epsilon)$

Elastic energy on the boundary.

$$\varphi(\epsilon) + \frac{\Phi(\epsilon)}{\Phi'(\epsilon)} \overline{\varphi'(\epsilon)} + \overline{\psi(\epsilon)} = 0.$$
 (4)

From the b.c. at ∞

$$\varphi(\epsilon) = \frac{\sigma_0}{2} F_1 \epsilon + \varphi_0(\epsilon); \quad \psi(\epsilon) = \psi_0(\epsilon)$$

the unknowns are the expansion coefficients of ϕ_0 and

$$\varphi_0(\epsilon) = \sum_{n=0}^{\infty} u_{-n} \epsilon^{-n} ; \quad \psi_0(\epsilon) = \sum_{n=0}^{\infty} v_{-n} \epsilon^{-n} .$$

for u_{-n} (and another for v_{-n}). From Eq. (4) we obtain a linear system of equations

After solving:

$$u_n \to \varphi \to \varphi' \to \mathsf{Tr}\boldsymbol{\sigma} = 4\Re(\frac{\varphi'}{\Phi'}) \to S = \frac{1}{2E}[\mathsf{tr}\boldsymbol{\sigma}]^2$$

ullet The curvature κ is given in term of the conformal map

$$\kappa = \Re\left(\frac{1}{|\Phi'|}(1 + \frac{\Phi''}{\Phi'}e^{i\theta})\right) . \tag{5}$$

$$v_n = -\partial_s^2(S - \gamma \kappa) = -\frac{1}{|\Phi'|}\partial_\theta \left(\frac{1}{|\Phi'|}\partial_\theta(S - \gamma \kappa)\right)$$

Motion of the interface

$$\frac{d\mathbf{R}(s,t)}{dt} \cdot \mathbf{n}(s) = v_n(s)$$

- $n(s) \rightarrow n(s) = n_x + i n_y$ normal at $\Gamma(s)$
- $\bullet R(s) \rightarrow z(s) = \Phi(e^{i\theta(s)}) \text{ on } \Gamma(s)$

Then (we use $\epsilon = e^{i\theta}$)

$$v_n(s) = \Re \left[\frac{d\Phi(\epsilon, t)}{dt} \bar{n} \right] .$$

The tangent τ vector is

$$\tau = \frac{\partial \Phi(\epsilon)}{\partial s} = \frac{1}{|\Phi'(\epsilon)|} \frac{\partial \Phi(\epsilon)}{\partial \theta}$$

and the normal n is a rotation in 90^o of au

$$n = -i\tau = \frac{\epsilon}{|\Phi'(\epsilon)|} \Phi'(\epsilon)$$

$$\frac{d\Phi(e^{i\theta},t)}{dt} = \partial_t \Phi + \Phi' e^{i\theta} i\theta_t$$

We derive:

$$v_n(s) = \Re\left(\partial_t \Phi(\epsilon) \epsilon \frac{\overline{\Phi'(\epsilon)}}{|\Phi'(\epsilon)|}\right)$$
 (6)

We rewrite this equation,

$$\partial_t \Phi = \epsilon \Phi'(\epsilon) \left(\frac{v_n}{|\Phi'|} + iC \right)$$

with an unknown imaginary part C.

Analytic continuation \rightarrow Poisson integral formula:

$$\partial_t \Phi = \omega \Phi'(\omega) \int_0^{2\pi} \frac{d\theta}{2\pi} \frac{\omega + e^{i\theta}}{\omega - e^{i\theta}} \frac{v_n(e^{i\theta})}{|\Phi'(e^{i\theta})|} \tag{8}$$

we where seeking. tions which provide the dynamics of the conformal map The equation, being analytic, must have analytic solu-

Evolution of an initial elliptical hole. Initial condition is

$$\Phi(\omega, t) = F_1(0)\omega + \frac{F_{-1}(0)}{\omega},$$
(9)

linear stability of a circular cavity

For a circular cavity under biaxial stress $v_n = 0$

Consider perturbations of the form

$$\Phi(\omega) = R\omega + \sum_{n=1}^{\infty} f_n \omega^{-n}; \quad |f_n| << 1$$

which maps the unit circle ($\epsilon=e^{i heta}$) to a wavy shaped circle of radius R.

First: Compute linear contribution to κ

contribution to $tr\sigma$ is Second: Solve the elastic problem (boundary) the linear

$$\operatorname{tr} \boldsymbol{\sigma} = 2\sigma_0 + 2\sum_{n=1} \left(2\frac{\sigma_0}{R} n \right) \Re[f_n \epsilon^{-n-1}]$$

To first order is correct to take $s = R\theta$, i.e

$$v_n = -\frac{1}{R^2} \partial_\theta^2 \mu$$

 v_n is linear in the perturbation amplitude.

$$g = \frac{v_n}{|\Phi'|} = \frac{v_n}{R} = \frac{1}{R^3} \sum_n (n+1)^2 A_n \Re \left[f_n e^{-n-1} \right]$$

UIIM

$$A_n = \left(\frac{8\sigma_0^2}{ER}\right)n - \frac{\gamma}{R^2}n(n+2)$$

circle is g is simply The analytic function G whose real part on the unit

$$G = \frac{1}{R^3} \sum_{n} (n+1)^2 A_n f_n \omega^{-n-1}$$

and no integral must be computed.

of the form $f_n(t) = e^{\lambda_n t} f_n(0)$ exist with

instability occurs at a critical value $R_{crit} = \frac{E \gamma}{4\sigma_0^2}$

 $\lambda_n = \frac{(n+1)^2}{R^2} A_n = \frac{(n+1)^2}{R^2} \left(\left[\frac{8\sigma_0^2}{ER} - \frac{2\gamma}{R^2} \right] n - \frac{\gamma}{R^2} n^2 \right)$

Surface Tension β Effects

The chemical potential $\mu=\mu_0+C[S-\gamma\kappa+eta(rac{\partial\epsilon_{tt}}{\partial n}-\kappa\epsilon_{tt})]$

and $\sigma_{nn}=eta\kappa$ on the boundary

$$\frac{R^2}{(n+1)^2} \lambda_n = \frac{1}{E} \left[\left(\frac{8\sigma_0^2}{R} - \frac{12\beta\sigma_0}{R^2} \right) n - \dots \right] - \frac{2\gamma}{R^2} n + \dots$$

Compression-Extension degeneracy is removed:

The critical value $R_{crit} = \frac{E\gamma}{4\sigma_0^2} + \frac{3\beta}{2\sigma_0}$

form faster for compression. Nonlinear regime, we observed that grooves start to

Grow faster than exponential... finite time singularity?

mum is attained for the cusped cycloid. Minimizing energy among a family of cycloids, mini-

conclusions

- tension stressed materials considering the effect of surface We have studied the dynamics of evolving cavities in
- without surface tension) to studied problems with finite time singularities Conformal dynamics have been useful in the past (Shraiman - Bensimon dynamics for invisid fluids
- Analytically simple linear analysis of the instability.